Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Park, Hunkwan

  • Google
  • 4
  • 5
  • 87

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2020Numerical study of the metal vapour transport in tungsten inert-gas welding in argon for stainless steel22citations
  • 2020Numerical study of the effects and transport mechanisms of iron vapour in tungsten inert-gas welding in argon17citations
  • 2018A computational model of gas tungsten arc welding of stainless steel: the importance of treating the different metal vapours simultaneously28citations
  • 2017Mixing of multiple metal vapours into an arc plasma in gas tungsten arc welding of stainless steel20citations

Places of action

Chart of shared publication
Tanaka, Manabu
4 / 10 shared
Tanaka, Keigo
4 / 5 shared
Shigeta, Masaya
2 / 2 shared
Chen, Fiona
1 / 4 shared
Trautmann, Marcus
2 / 4 shared
Chart of publication period
2020
2018
2017

Co-Authors (by relevance)

  • Tanaka, Manabu
  • Tanaka, Keigo
  • Shigeta, Masaya
  • Chen, Fiona
  • Trautmann, Marcus
OrganizationsLocationPeople

article

Numerical study of the effects and transport mechanisms of iron vapour in tungsten inert-gas welding in argon

  • Tanaka, Manabu
  • Tanaka, Keigo
  • Shigeta, Masaya
  • Park, Hunkwan
Abstract

Tungsten inert-gas (TIG) welding uses an electric arc between a tungsten cathode and a metal anode to partially melt the anode workpiece, forming a weld pool. Metal vapour emanating from the weld pool has important effects on the arc welding process. An axisymmetric computational model of the arc and weld pool is used to examine the transport and influence of iron vapour on an argon arc plasma. In contrast to previous studies that use approximate and incomplete treatments of diffusion, the present model incorporates the combined diffusion coefficient method, which takes into account all important driving forces. The influence of metal vapour is first examined for an arc current of 400 A. Metal vapour is predicted to be present in high concentrations above the anode and near the cathode tip, and in a lower concentration in the arc column. The presence of metal vapour in the arc is found to lead to a substantial reduction in arc temperature (up to 1600K) and current density, resulting in a significant decrease in the weld pool depth and volume. It is shown that ordinary diffusion leads to iron vapour transport upward from the anode region along the arc fringes and into the recirculating convective flow, which carries the iron vapour to the cathode region. Here the upward diffusion driven by the electric field and temperature gradient traps the iron vapour below the cathode tip, leading to a high concentration in this region. The influence of arc current is investigated in the range from 150 to 400 A. The results obtained for standard welding currents of 150, 200 and 250 A also predict significant concentrations of iron vapour in the arc, with the concentration increasing with current in the arc column and near the anode. The concentration near the cathode tip is lower at 400 A because the temperature and electric field diffusion coefficients are lower at the higher temperatures present near the cathode. Spectroscopic measurements of atomic chromium emission for argon TIG welding of a chromium anode are presented and compared to predictions of the code. The measurements show the presence of metal vapour in both the cathode and anode regions, in agreement with the model.

Topics
  • density
  • impedance spectroscopy
  • chromium
  • melt
  • forming
  • iron
  • current density
  • tungsten