People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Song, Aimin M.
University of Manchester
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2018A high speed PE-ALD ZnO Schottky diode rectifier with low interface-state densitycitations
- 2008Triarylamine polymers by microwave-assisted polycondensation for use in organic field-effect transistorscitations
- 2006Highly tunable, high-throughput nanolithography based on strained regioregular conducting polymer filmscitations
- 2006Combined optical and electrical studies of the effects of annealing on the intrinsic states and deep levels in a self-assembled InAs quantum-dot structurecitations
Places of action
Organizations | Location | People |
---|
article
A high speed PE-ALD ZnO Schottky diode rectifier with low interface-state density
Abstract
Zinc oxide (ZnO) has recently attracted attention for its potential application to high speed electronics. In this work, a high speed Schottky diode rectifier was fabricated based on a ZnO thin film deposited by plasma-enhanced atomic layer deposition and a PtOx Schottky contact deposited by reactive radio-frequency sputtering. The rectifier shows an ideality factor of 1.31, an effective barrier height of 0.79 eV, a rectification ratio of 1.17 × 107, and cut-off frequency as high as 550 MHz. Low frequency noise measurements reveal that the rectifier has a low interface-state density of 5.13 × 1012 cm−2 eV−1, and the noise is dominated by the mechanism of a random walk of electrons at the PtOx/ZnO interface. The work shows that the rectifier can be used for both noise sensitive and high frequency electronics applications.