People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Alhabill, Fuad, N. F.
University of Huddersfield
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2021Effect of stoichiometry on AC and DC breakdown of silicon nitride/epoxy nanocompositescitations
- 2021On nanocomposite fabricationcitations
- 2018The effect of water absorption on the dielectric properties of polyethylene hexagonal boron nitride nanocompositescitations
- 2018Enhanced dielectric properties of polyethylene/hexagonal boron nitride nanocompositescitations
- 2018Influence of filler/matrix interactions on resin/hardener stoichiometry, molecular dynamics, and particle dispersion of silicon nitride/epoxy nanocompositescitations
- 2018Introducing particle interphase model for describing the electrical behaviour of nanodielectricscitations
- 2017Moisture Absorption Behavior in Silicon Nitride Epoxy Nanocompositescitations
- 2017Effect of Resin/Hardener Stoichiometry on Electrical Behavior of Epoxy Networkscitations
- 2016The effect of resin/hardener stoichiometry on the electrical properties of silicon nitride/epoxy nanocompositescitations
- 2015Effect of the Processing Method on the Electrical Behavior of Silicon Nitride / Epoxy Nanocompositescitations
Places of action
Organizations | Location | People |
---|
article
The effect of water absorption on the dielectric properties of polyethylene hexagonal boron nitride nanocomposites
Abstract
The effect of water absorption on the dielectric response of polyethylene/hexagonal boron nitride nanocomposites has been studied by dielectric spectroscopy. The nanocomposites have been prepared with hBN concentrations ranging from 2 wt% to 30 wt%. Fourier transform infrared spectroscopy and thermogravimetric analysis revealed a very small amount of hydroxyl groups on the surface of hBN. Mass loss measurements showed that the nanocomposites did not absorb any water under ambient and dry conditions while there was some water absorption under wet conditions. The dielectric spectroscopy results showed a broad relaxation peak, indicative of different states of water with water shells of different thickness, which moved to higher frequencies with increasing water content. However, the dielectric losses were significantly lower than the losses reported in the literature of nanocomposites under wet conditions. In addition, all the absorbed water was successfully removed under vacuum conditions which demonstrated that the interactions between the water and the nanocomposites were very weak, due to the hydrophobic nature of the hBN surface. This is a highly useful property, when considering these materials for applications in electrical insulation.