Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Xu, Xiaojie

  • Google
  • 1
  • 5
  • 23

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2017High figure-of-merit p-type transparent conductor, Cu alloyed ZnS via radio frequency magnetron sputtering23citations

Places of action

Chart of shared publication
Ager, Joel W., Iii
1 / 1 shared
Balasubramaniam, K. R.
1 / 1 shared
Maurya, Sandeep Kumar
1 / 1 shared
Das, Chandan
1 / 2 shared
Liu, Ya
1 / 1 shared
Chart of publication period
2017

Co-Authors (by relevance)

  • Ager, Joel W., Iii
  • Balasubramaniam, K. R.
  • Maurya, Sandeep Kumar
  • Das, Chandan
  • Liu, Ya
OrganizationsLocationPeople

article

High figure-of-merit p-type transparent conductor, Cu alloyed ZnS via radio frequency magnetron sputtering

  • Ager, Joel W., Iii
  • Balasubramaniam, K. R.
  • Maurya, Sandeep Kumar
  • Das, Chandan
  • Liu, Ya
  • Xu, Xiaojie
Abstract

p-type transparent conducting Cu alloyed ZnS thin films from Cu<SUB>{x</SUB>} Zn<SUB>{1-x</SUB>} S targets (x = 0.1 , 0.2, 0.3, 0.4, and 0.5) were deposited on glass substrates via radio frequency sputtering. x-ray diffraction and TEM-SAED analysis show that all the films have sphalerite ZnS as the majority crystalline phase. In addition, films with 30% and 40% Cu show the presence of increasing amounts of crystalline Cu<SUB>2</SUB>S phase. Conductivity values  ⩾400 S cm<SUP>-1</SUP> were obtained for the films having 30% and 40% Cu, with the maximum conductivity of 752 S cm<SUP>-1</SUP> obtained for the film with 40% Cu. Temperature dependent electrical transport measurements indicate metallic as well as degenerate hole conductivity in the deposited films. The reflection-corrected transmittance of this Cu alloyed ZnS (40% Cu) film was determined to be  ⩾75% at 550 nm. The transparent conductor figure of merit (Φ<SUB>TC</SUB> ) of the Cu alloyed ZnS (40% Cu), calculated with the average value of transmittance between 1.5 to 2.5 eV, was  ≈276 μS ....

Topics
  • x-ray diffraction
  • thin film
  • crystalline phase
  • glass
  • glass
  • transmission electron microscopy