People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Thomas, Andrew G.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (28/28 displayed)
- 2024Toward Water-Resistant, Tunable Perovskite Absorbers Using Peptide Hydrogel Additives
- 2023Elucidating the mechanism of self healing in hydro gel lead halide perovskite composites for use in photovoltaic devices
- 2022Surface stability of ionic-liquid-passivated mixed-cation perovskite probed with in-situ photoelectron spectroscopycitations
- 2022High efficiency semitransparent perovskite solar cells containing 2D nanopore arrays deposited in a single stepcitations
- 2022High efficiency semitransparent perovskite solar cells containing 2D nanopore arrays deposited in a single stepcitations
- 2021Improving the Efficiency, Stability, and Adhesion of Perovskite Solar Cells Using Nanogel Additive Engineeringcitations
- 2021Inelastic background modelling applied to Hard X-ray Photoelectron Spectroscopy of deeply buried layers: a comparison of synchrotron and lab-based (9.25 keV) measurementscitations
- 2021Controlling the Thermoelectric Properties of Nb-Doped TiO2 Ceramics through Engineering Defect Structurescitations
- 2020Functionalization of MoO3[sbnd]NiMoO4 nanocomposite using organic template for energy storage applicationcitations
- 2020Synthesis and analysis of ZnO-CoMoO4 incorporated organic compounds for efficient degradation of azo dye pollutants under dark ambient conditionscitations
- 2020Functionalization of MoO 3 [sbnd]NiMoO 4 nanocomposite using organic template for energy storage applicationcitations
- 2020Using soft polymer template engineering of mesoporous TiO2 scaffolds to increase perovskite grain size and solar cell efficiencycitations
- 2020Evaluation of electrochemical properties for water splitting by NiO nano-cubes synthesized using Olea ferruginea Roylecitations
- 2020Organic template-assisted green synthesis of CoMoO4 nanomaterials for the investigation of energy storage propertiescitations
- 2019Air-Stable Methylammonium Lead Iodide Perovskite Thin Films Fabricated via Aerosol-Assisted Chemical Vapor Deposition from a Pseudohalide Pb(SCN)2 Precursorcitations
- 2019Interaction of a tripeptide with titania surfaces: RGD adsorption on rutile TiO2(110) and model dental implant surfacescitations
- 2019Preliminary study of hydroxyapatite particles air abrasive blasting on Mg-4Zn-0.3Ca surfacecitations
- 2019A molecular precursor route to quaternary chalcogenide CFTS (Cu2FeSnS4) powders as potential solar absorber materialscitations
- 2018Optical and Electrical Studies of CdS Thin Films with thickness variationcitations
- 2018Corrosion protection of carbon steel by tetraphosphonates of systematically different molecular sizecitations
- 2018Ambient-Air-Stable Inorganic Cs2SnI6 Double Perovskite Thin Films via Aerosol-Assisted Chemical Vapour Depositioncitations
- 2017Reduced electrical performance of Zn enriched ZnTe nanoinclusion semiconductors thin films for buffer layer in solar cellscitations
- 2014Multitechnique characterization of CPTi surfaces after electro discharge machining (EDM)citations
- 2012PEGylation of nanosubstrates (Titania) with multifunctional reagents: At the crossroads between nanoparticles and nanocompositescitations
- 2010Surface characterization of zirconia dental implantscitations
- 2007Electronic properties of the interface between p-CuI and anatase-phase n-Ti O2 single crystal and nanoparticulate surfaces: A photoemission studycitations
- 2005Resonant photoemission of transition metal perovskitescitations
- 2002Electronic structure and reactivity of TM-doped La1-xSrxCoO3 (TM = Ni, Fe) catalystscitations
Places of action
Organizations | Location | People |
---|
article
Reduced electrical performance of Zn enriched ZnTe nanoinclusion semiconductors thin films for buffer layer in solar cells
Abstract
Closed space sublimation (CSS) technique was employed to deposit thin films of zinc telluride (ZnTe) on a glass substrate under high vacuum. Two sets of ZnTe thin films and Zn enriched ZnTe thin films were prepared for comparative study. The enrichment for Zn onto the as-deposited ZnTe thin films was done by the novel manner of layer by layer deposition with subsequent annealing. X-ray diffraction (XRD) studies revealed before and after the enrichment of Zn the preferred orientation is [1 1 1] having cubic phase. The lattice constant was found to be increased and the crystallite size decreased 28 nm to 24 nm after the enrichment of Zn. A morphological study was carried out through a scanning electron microscope (SEM). For Zn enriched samples the average grain size is smaller as compared to ZnTe thin films. The local compositions of Zn and Te were confirmed by energy dispersive x-rays (EDX) from 51 atomic % of as-deposited ZnTe thin films to 68 atomic % in Zn enriched ZnTe thin films. The Zn enriched samples have a slight decrease in optical transmission in UV-VIS-NIR range as compared to the as-deposited ZnTe thin films. Due to the deposition of Zn there is a very small change in optical band gap energy. A four-probe technique was used to study electrical properties of as-deposited and Zn-enriched ZnTe thin films. These results shows that the as-deposited samples had the resistivity of 10 6 Ω • cm. For Zn enrichment samples resistivity increases from 10 6 Ω • cm to 10 8 Ω • cm, which shows that Zn-enriched samples are not suitable for back contact of II-VI solar cells. X-rays photoelectron spectroscopy (XPS) was used to confirm the elemental compositions and its bonding strength before and after the enrichment of Zn.