People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Li, Li
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (24/24 displayed)
- 2023Large-area epitaxial growth of InAs nanowires and thin films on hexagonal boron nitride by metal organic chemical vapor depositioncitations
- 2023First-Ply Failure Analysis of Helicoidal/Bouligand Bio-Inspired Laminated Composite Platescitations
- 2022Tuning the crystal structure and optical properties of selective area grown InGaAs nanowirescitations
- 2022Effective Passivation of InGaAs Nanowires for Telecommunication Wavelength Optoelectronicscitations
- 2021Tuning the crystal structure and optical properties of selective area grown InGaAs nanowires
- 2021Multivariate genomic analysis and optimal contributions selection predicts high genetic gains in cooking time, iron, zinc, and grain yield in common beans in East Africacitations
- 2021Passivation of InP solar cells using large area hexagonal-BN layerscitations
- 2019Damage analysis of a perfect broadband absorber by a femtosecond lasercitations
- 2018Tungsten Refractory Plasmonic Material for High Fluence Bowtie Nano-antenna
- 2018Impurity Gettering by Diffusion-doped Polysilicon Passivating Contacts for Silicon Solar Cellscitations
- 2017Imaging of doped iron pnictides across a structural phase transition
- 2017Void evolution and porosity under arsenic ion irradiation in GaAs1-xSbx alloyscitations
- 2016Cluster analysis of acoustic emission signals for 2D and 3D woven carbon fiber/epoxy compositescitations
- 2016Shear-Coupled Grain Growth and Texture Development in a Nanocrystalline Ni-Fe Alloy during Cold Rollingcitations
- 2015Identification of the damage in woven composites based on acoustic emission cluster analysis
- 2014Encapsulated <scp>PDMS</scp> Microspheres with Reactive Handlescitations
- 2013On the mechanical effects of a nanocrystallisation treatment for ZrO2 oxide films growing on a zirconium alloycitations
- 2013Reversible loss of bernal stacking during the deformation of few-layer graphene in nanocompositescitations
- 2012Experimental and numerical study of the effects of a nanocrystallisation treatment on high-temperature oxidation of a zirconium alloycitations
- 2011Work softening in nanocrystalline materials induced by dislocation annihilationcitations
- 2011Ultrafiltration by gyroid nanoporous polymer membranescitations
- 2010Hydrophilic nanoporous materials
- 2008Plastic behavior of a nickel-based alloy under monotonic-tension and low-cycle-fatigue loadingcitations
- 2007Anion selectivity in zwitterionic amide-funtionalised metal salt extractantscitations
Places of action
Organizations | Location | People |
---|
article
Void evolution and porosity under arsenic ion irradiation in GaAs1-xSbx alloys
Abstract
<p>We have studied the formation of porosity in crystalline GaAs<sub>0.25</sub>Sb<sub>0.75</sub> and GaAs<sub>0.5</sub>Sb<sub>0.5</sub> alloys under irradiation with 140 keV As<sup>-</sup> ions over a wide range of temperature (-180 to 400 °C) and ion fluences ranging from 1 × 10<sup>13</sup> to ions 2 × 10<sup>17</sup> cm<sup>-2</sup>. The GaAs<sub>0.25</sub>Sb<sub>0.75</sub> alloy showed only little swelling (in comparison with GaSb), with void formation and sputtering both playing an important role in the materials modification. The initiation of voids and their evolution in the alloy strongly depends on the ion fluence and irradiation temperature, as well as the As content in the alloy. Porosity is largely suppressed in the GaAs<sub>0.25</sub>Sb<sub>0.75</sub> alloy, with the major change being void formation. For the GaAs<sub>0.5</sub>Sb<sub>0.5</sub> alloy, it was rendered amorphous with no apparent pores or void structures and only sputtering effects were observed at high ion fluence. In addition, the transformations from crystalline to amorphous and to a void or a porous structure occurred simultaneously in the GaAs<sub>0.25</sub>Sb<sub>0.75</sub> alloy. The mechanisms responsible for such changes are consistent with point defect movement and segregation.</p>