Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Xiao, Kewen

  • Google
  • 1
  • 4
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Q-switching of an optical tweezer phonon laser1citations

Places of action

Chart of shared publication
Pal, Arpita
1 / 1 shared
Pettit, R. M.
1 / 1 shared
Vamivakas, A. N.
1 / 1 shared
Bhattacharya, M.
1 / 18 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Pal, Arpita
  • Pettit, R. M.
  • Vamivakas, A. N.
  • Bhattacharya, M.
OrganizationsLocationPeople

article

Q-switching of an optical tweezer phonon laser

  • Xiao, Kewen
  • Pal, Arpita
  • Pettit, R. M.
  • Vamivakas, A. N.
  • Bhattacharya, M.
Abstract

<jats:title>Abstract</jats:title><jats:p>We theoretically investigate the active <jats:italic>Q</jats:italic>-switching of an optical tweezer phonon laser Pettit <jats:italic>et al</jats:italic> (2019 <jats:italic>Nat. Photon.</jats:italic><jats:bold>13</jats:bold> 402) operating in a coupled-mode configuration. One of the modes is lasing and outcouples to the second mode. The coupling is induced via asymmetric modulation of the trap potential in the transverse plane of the trapped nanoparticle. We show that a time-modulated coherent coupling between two transverse modes of oscillation of an optically levitated nanoparticle holds the key to coherent pulsed phonon transfer between them. Our analytical and numerical results on the position dynamics, phonon dynamics as well as second-order coherence confirms pulsed phonon lasing transfer between the transverse modes. Our work on <jats:italic>Q</jats:italic>-switched operation of the optical tweezer phonon laser enhances understanding of the analogies between optical and mechanical lasers, and is relevant to levitated phonon transport, acoustic imaging, sensing and information processing technologies.</jats:p>

Topics
  • nanoparticle
  • impedance spectroscopy