Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Enrico, Alessandro

  • Google
  • 4
  • 22
  • 37

University of Pavia

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2020Bactericidal surfaces prepared by femtosecond laser patterning and layer-by-layer polyelectrolyte coating21citations
  • 2019Transfer printing of nanomaterials and microstructures using a wire bonder1citations
  • 2019Transfer printing of nanomaterials and microstructures using a wire bonder1citations
  • 2016A novel graphene based nanocomposite for application in 3D flexible micro-supercapacitors14citations

Places of action

Chart of shared publication
Pettersson, Torbjorn
1 / 2 shared
Stemme, Goran
2 / 3 shared
Ek, Monica
1 / 1 shared
Wagberg, Lars
1 / 9 shared
Chen, Chao
1 / 3 shared
Niklaus, Frank
2 / 19 shared
Herland, Anna
1 / 4 shared
Wang, Xiaojing
1 / 4 shared
Kataria, Satender
1 / 2 shared
Lemme, Max C.
1 / 5 shared
Schroder, Stephan
1 / 1 shared
Roxhed, Niclas
1 / 7 shared
Gigot, Arnaud Nicolas
1 / 2 shared
Marasso, Sl
1 / 1 shared
Rivolo, Paola
1 / 20 shared
Giardi, R.
1 / 1 shared
Tresso, Elena Maria
1 / 10 shared
Pirri, Cf
1 / 2 shared
Serrapede, Mara
1 / 5 shared
Benetto, Simone
1 / 1 shared
Cocuzza, Matteo
1 / 13 shared
Mombello, D.
1 / 1 shared
Chart of publication period
2020
2019
2016

Co-Authors (by relevance)

  • Pettersson, Torbjorn
  • Stemme, Goran
  • Ek, Monica
  • Wagberg, Lars
  • Chen, Chao
  • Niklaus, Frank
  • Herland, Anna
  • Wang, Xiaojing
  • Kataria, Satender
  • Lemme, Max C.
  • Schroder, Stephan
  • Roxhed, Niclas
  • Gigot, Arnaud Nicolas
  • Marasso, Sl
  • Rivolo, Paola
  • Giardi, R.
  • Tresso, Elena Maria
  • Pirri, Cf
  • Serrapede, Mara
  • Benetto, Simone
  • Cocuzza, Matteo
  • Mombello, D.
OrganizationsLocationPeople

article

Transfer printing of nanomaterials and microstructures using a wire bonder

  • Enrico, Alessandro
Abstract

<jats:title>Abstract</jats:title><jats:p>Scalable and cost-efficient transfer of nanomaterials and microstructures from their original fabrication substrate to a new host substrate is a key challenge for realizing heterogeneously integrated functional systems, such as sensors, photonics, and electronics. Here we demonstrate a high-throughput and versatile integration method utilizing conventional wire bonding tools to transfer-print carbon nanotubes (CNTs) and silicon microstructures. Standard ball stitch wire bonding cycles were used as scalable and high-speed pick-and-place operations to realize the material transfer. Our experimental results demonstrated successful transfer printing of single-walled CNTs (100 <jats:inline-formula><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="jmmab4d1fieqn001.gif" xlink:type="simple" /></jats:inline-formula>m-diameter patches) from their growth substrate to polydimethylsiloxane, parylene, or Au/parylene electrode substrates, and realization of field emission cathodes made of CNTs on a silicon substrate. Field emission measurements manifested excellent emission performance of the CNT electrodes. Further, we demonstrated the utility of a high-speed wire bonder for transfer printing of silicon microstructures (60 <jats:inline-formula><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="jmmab4d1fieqn002.gif" xlink:type="simple" /></jats:inline-formula>m <jats:inline-formula><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="jmmab4d1fieqn003.gif" xlink:type="simple" /></jats:inline-formula> 60 <jats:inline-formula><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="jmmab4d1fieqn004.gif" xlink:type="simple" /></jats:inline-formula>m <jats:inline-formula><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="jmmab4d1fieqn005.gif" xlink:type="simple" /></jats:inline-formula> 20 <jats:inline-formula><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="jmmab4d1fieqn006.gif" xlink:type="simple" /></jats:inline-formula>m) from the original silicon on insulator substrate to a new host substrate. The achieved placement accuracy of the CNT patches and silicon microstructures on the target substrates were within <jats:inline-formula><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="jmmab4d1fieqn007.gif" xlink:type="simple" /></jats:inline-formula>4 <jats:inline-formula><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="jmmab4d1fieqn008.gif" xlink:type="simple" /></jats:inline-formula>m. These results show the potential of using established and extremely cost-efficient semiconductor wire bonding infrastructure for transfer printing of nanomaterials and microstructures to realize integrated microsystems and flexible electronics.</jats:p>

Topics
  • impedance spectroscopy
  • microstructure
  • Carbon
  • nanotube
  • semiconductor
  • Silicon
  • wire