People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Yaala, Marwa Ben
University of Strathclyde
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2024Non-stoichiometric silicon nitride for future gravitational wave detectorscitations
- 2023Controlling the optical properties of hafnium dioxide thin films deposited with electron cyclotron resonance ion beam depositioncitations
- 2022Updates for automatic analysis and post-processing of JET neutral particle analysers for TT and DT campaignscitations
- 2020Plasma-activated catalytic formation of ammonia from N2–H2citations
Places of action
Organizations | Location | People |
---|
article
Non-stoichiometric silicon nitride for future gravitational wave detectors
Abstract
<jats:title>Abstract</jats:title><jats:p>Silicon nitride thin films were deposited at room temperature employing a custom ion beam deposition (IBD) system. The stoichiometry of these films was tuned by controlling the nitrogen gas flow through the ion source and a process gas ring. A correlation is established between the process parameters, such as ion beam voltage and ion current, and the optical and mechanical properties of the films based on post-deposition heat treatment. The results show that with increasing heat treatment temperature, the mechanical loss of these materials as well as their optical absorption decreases producing films with an extinction coefficient as low as <jats:inline-formula><jats:tex-math><?CDATA ${k} = 6.2 ( 0.5)10^{-7}$?></jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"><mml:mrow><mml:mtext mathvariant="italic">k</mml:mtext><mml:mo>=</mml:mo><mml:mn>6.2</mml:mn><mml:mo stretchy="false">(</mml:mo><mml:mo>±</mml:mo><mml:mn>0.5</mml:mn><mml:mo stretchy="false">)</mml:mo><mml:mo>×</mml:mo><mml:msup><mml:mn>10</mml:mn><mml:mrow><mml:mo>−</mml:mo><mml:mn>7</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cqgad35a1ieqn1.gif" xlink:type="simple" /></jats:inline-formula> at 1064 nm for samples annealed at 900 <jats:sup>∘</jats:sup>C. This presents the lowest value for IBD SiN<jats:sub><jats:italic>x</jats:italic></jats:sub> within the context of gravitational wave detector applications. The mechanical loss of the films was measured to be <jats:inline-formula><jats:tex-math><?CDATA $ = 2.1 ( 0.6)10^{-4}$?></jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"><mml:mrow><mml:mi>ϕ</mml:mi><mml:mo>=</mml:mo><mml:mn>2.1</mml:mn><mml:mo stretchy="false">(</mml:mo><mml:mo>±</mml:mo><mml:mn>0.6</mml:mn><mml:mo stretchy="false">)</mml:mo><mml:mo>×</mml:mo><mml:msup><mml:mn>10</mml:mn><mml:mrow><mml:mo>−</mml:mo><mml:mn>4</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cqgad35a1ieqn2.gif" xlink:type="simple" /></jats:inline-formula> once annealed post deposition to 900 <jats:sup>∘</jats:sup>C.</jats:p>