Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Brunner, Patricia

  • Google
  • 1
  • 3
  • 81

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2005Solution of the inverse problem of magnetic induction tomography (MIT)81citations

Places of action

Chart of shared publication
Scharfetter, Hermann
1 / 3 shared
Merwa, Robert
1 / 2 shared
Hollaus, Karl
1 / 6 shared
Chart of publication period
2005

Co-Authors (by relevance)

  • Scharfetter, Hermann
  • Merwa, Robert
  • Hollaus, Karl
OrganizationsLocationPeople

article

Solution of the inverse problem of magnetic induction tomography (MIT)

  • Scharfetter, Hermann
  • Merwa, Robert
  • Brunner, Patricia
  • Hollaus, Karl
Abstract

Magnetic induction tomography (MIT) of biological tissue is used to reconstruct the changes in the complex conductivity distribution inside an object under investigation. The measurement principle is based on determining the perturbation ?B of a primary alternating magnetic field B0, which is coupled from an array of excitation coils to the object under investigation. The corresponding voltages ?V and V0 induced in a receiver coil carry the information about the passive electrical properties (i.e. conductivity, permittivity and permeability). The reconstruction of the conductivity distribution requires the solution of a 3D inverse eddy current problem. As in EIT the inverse problem is ill-posed and on this account some regularization scheme has to be applied. We developed an inverse solver based on the Gauss?Newton-one-step method for differential imaging, and we implemented and tested four different regularization schemes: the first and second approaches employ a classical smoothness criterion using the unit matrix and a differential matrix of first order as the regularization matrix. The third method is based on variance uniformization, and the fourth method is based on the truncated singular value decomposition. Reconstructions were carried out with synthetic measurement data generated with a spherical perturbation at different locations within a conducting cylinder. Data were generated on a different mesh and 1% random noise was added. The model contained 16 excitation coils and 32 receiver coils which could be combined pairwise to give 16 planar gradiometers. With 32 receiver coils all regularization methods yield fairly good 3D-images of the modelled changes of the conductivity distribution, and prove the feasibility of difference imaging with MIT. The reconstructed perturbations appear at the right location, and their size is in the expected range. With 16 planar gradiometers an additional spurious feature appears mirrored with respect to the median plane with negative sign. This demonstrates that a symmetrical arrangement with one ring of planar gradiometers cannot distinguish between a positive conductivity change at the true location and a negative conductivity change at the mirrored location.

Topics
  • impedance spectroscopy
  • tomography
  • permeability
  • random
  • decomposition