Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kossard, Steven

  • Google
  • 1
  • 3
  • 9

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2004Accuracy and reliability of a dynamic biomechanical skin measuremeat probe for the analysis of stiffness and viscoelasticity9citations

Places of action

Chart of shared publication
Dawes-Higgs, Elizabeth K.
1 / 1 shared
Swain, Michael V.
1 / 6 shared
Higgs, Robin J. E. D.
1 / 1 shared
Chart of publication period
2004

Co-Authors (by relevance)

  • Dawes-Higgs, Elizabeth K.
  • Swain, Michael V.
  • Higgs, Robin J. E. D.
OrganizationsLocationPeople

article

Accuracy and reliability of a dynamic biomechanical skin measuremeat probe for the analysis of stiffness and viscoelasticity

  • Dawes-Higgs, Elizabeth K.
  • Swain, Michael V.
  • Kossard, Steven
  • Higgs, Robin J. E. D.
Abstract

<p>A novel instrument has been devised for the in vivo examination of the dynamic biomechanical properties of skin. These properties include stiffness and viscoelasticity. The advantage of the device is its ability to examine the skin dynamically, thereby eliminating preconditioning effects. Furthermore, it is portable, hand-held and easy to operate in the clinical environment. The objective of this study was to determine the accuracy and reliability of the dynamic biomechanical skin measurement (DBSM) probe. The accuracy was determined by examining a series of silicone elastomer specimens. A comparison of the shear modulus (G*), obtained from a static indentation system, with stiffness, obtained from the DBSM probe, was performed. The reliability was determined by examining both silicone elastomers and forearm volar skin in vivo. In both cases assessment was by six different operators (inter-reliability) and also by an individual operator (intra-reliability). Statistical analysis was performed using Levene's test of homogeneity and analysis of variance to ascertain if there were significant differences between operators (inter-reliability) and with one individual operator (intra-reliability). It can be concluded, from this study, that the DBSM probe is accurate (R2 = 0.96, p = 0.01). It is also inter- and intra-reliable when assessing elastomer stiffness and skin stiffness. However, phase lag was not found to be a useful indicator of device reliability. It is anticipated that this device will be used to examine dermatological conditions and the benefits, or otherwise, of treatment. The DBSM probe promises to contribute to the objective measurement of physical properties of the skin in future investigative studies.</p>

Topics
  • impedance spectroscopy
  • phase
  • liquid-assisted grinding
  • viscoelasticity
  • elastomer