Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Deng, C.

  • Google
  • 1
  • 3
  • 51

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2013Comparison of molecular dynamics simulation methods for the study of grain boundary migration51citations

Places of action

Chart of shared publication
Mendelev, M. I.
1 / 7 shared
Schuh, C. A.
1 / 2 shared
Srolovitz, David
1 / 65 shared
Chart of publication period
2013

Co-Authors (by relevance)

  • Mendelev, M. I.
  • Schuh, C. A.
  • Srolovitz, David
OrganizationsLocationPeople

article

Comparison of molecular dynamics simulation methods for the study of grain boundary migration

  • Deng, C.
  • Mendelev, M. I.
  • Schuh, C. A.
  • Srolovitz, David
Abstract

In the present study, grain boundary (GB) mobility was determined by molecular dynamics (MD) simulations using two different techniques: the applied strain method and the adapted interface random walk method. The first method involves a driving force while the second method does not. Nevertheless, both methods led to essentially the same values of the GB mobility. This shows that the GB mobility is independent of the nature of the driving force, provided that it is low enough that the linear velocity-driving force relationship is properly sampled. The case studied here can be viewed as a validated reference case that can be used in future studies to test new techniques to determine the GB mobility. For this purpose we provide the full information about the interatomic potential we employed and the initial atomic configurations. Finally, we use the obtained results to discuss whether any existing MD simulation data agree with experimental data on pure metals.

Topics
  • impedance spectroscopy
  • grain
  • mobility
  • grain boundary
  • simulation
  • molecular dynamics
  • random