People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Vej-Hansen, Ulrik Grønbjerg
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2020QuantumATK: an integrated platform of electronic and atomic-scale modelling tools
- 2020QuantumATK: An integrated platform of electronic and atomic-scale modelling toolscitations
- 2017New Platinum Alloy Catalysts for Oxygen Electroreduction Based on Alkaline Earth Metalscitations
- 2017New Platinum Alloy Catalysts for Oxygen Electroreduction Based on Alkaline Earth Metalscitations
- 2016Exploring the Lanthanide Contraction to Tune the Activity and Stability of Pt
- 2016Exploring the Lanthanide Contraction to Tune the Activity and Stability of Pt
- 2016Correlation between diffusion barriers and alloying energy in binary alloyscitations
- 2016Pt x Gd alloy formation on Pt(111): Preparation and structural characterizationcitations
- 2015Controlling the Activity and Stability of Pt-Based Electrocatalysts By Means of the Lanthanide Contraction
- 2015Structure, activity, and stability of platinum alloys as catalysts for the oxygen reduction reaction
- 2015Correlating Structure and Oxygen Reduction Activity on Y/Pt(111) and Gd/Pt(111) Single Crystals
- 2014Understanding the Oxygen Reduction Reaction on a Y/Pt(111) Single Crystal
- 2014Engineering the Activity and Stability of Pt-Alloy Cathode Fuel-Cell Electrocatalysts by Tuning the Pt-Pt Distance
- 2012Understanding the electrocatalysis of oxygen reduction on platinum and its alloyscitations
- 2010Computer simulations of nanoindentation in Mg-Cu and Cu-Zr metallic glassescitations
Places of action
Organizations | Location | People |
---|
article
Computer simulations of nanoindentation in Mg-Cu and Cu-Zr metallic glasses
Abstract
The formation of shear bands during plastic deformation of Cu0.50Zr0.50 and Mg0.85Cu0.15 metallic glasses is studied using atomic-scale computer simulations. The atomic interactions are described using realistic many-body potentials within the effective medium theory, and are compared with similar simulations using a Lennard-Jones description of the material. The metallic glasses are deformed both in simple shear and in a simulated nanoindentation experiment. Plastic shear localizes into shear bands with a width of approximately 5 nm in CuZr and 8 nm in MgCu. In simple shear, the shear band formation is very clear, whereas only incipient shear bands are seen in nanoindentation. The shear band formation during nanoindentation is sensitive to the indentation velocity, indenter radius and the cooling rate during the formation of the metallic glass. For comparison, a similar nanoindentation simulation was made with a nanocrystalline sample, showing how the presence of a polycrystalline structure leads to a different and more spatially distributed deformation pattern, where dislocation avalanches play an important role.