Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Graz, Ingrid

  • Google
  • 2
  • 5
  • 11

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2020Adherence Kinetics of a PDMS Gripper with Inherent Surface Tackiness10citations
  • 2013Electromechanically active polymer transducers: research in Europe1citations

Places of action

Chart of shared publication
Vidal, Frederic
1 / 10 shared
Skov, Anne Ladegaard
1 / 298 shared
Jager, Edwin
1 / 8 shared
Vidal, Frédéric
1 / 6 shared
Carpi, Federico
1 / 18 shared
Chart of publication period
2020
2013

Co-Authors (by relevance)

  • Vidal, Frederic
  • Skov, Anne Ladegaard
  • Jager, Edwin
  • Vidal, Frédéric
  • Carpi, Federico
OrganizationsLocationPeople

article

Electromechanically active polymer transducers: research in Europe

  • Graz, Ingrid
  • Vidal, Frederic
  • Skov, Anne Ladegaard
  • Jager, Edwin
  • Vidal, Frédéric
  • Carpi, Federico
Abstract

Smart materials and structures based on electromechanically active polymers (EAPs) represent a fast growing and stimulating field of research and development. EAPs are materials capable of changing dimensions and/or shape in response to suitable electrical stimuli. They are commonly classified in two major families: ionic EAPs (activated by an electrically induced transport of ions and/or solvent) and electronic EAPs (activated by electrostatic forces).<br/><br/>These polymers show interesting properties, such as sizable active strains and/or stresses in response to electrical driving, high mechanical flexibility, low density, structural simplicity, ease of processing and scalability, no acoustic noise and, in most cases, low costs.<br/><br/>Since many of these characteristics can also describe natural muscle tissues from an engineering standpoint, it is not surprising that EAP transducers are sometimes also referred to as 'muscle-like smart materials' or 'artificial muscles'. They are used not only to generate motion, but also to sense or harvest energy from it. In particular, EAP electromechanical transducers are studied for applications that can benefit from their 'biomimetic' characteristics, with possible usages from the micro- to the macro-scale, spanning several disciplines, such as mechatronics, robotics, automation, biotechnology and biomedical engineering, haptics, fluidics, optics and acoustics.<br/><br/>Currently, the EAP field is just undergoing its initial transition from academic research into commercialization, with companies starting to invest in this technology and the first products appearing on the market.<br/><br/>This focus issue is intentionally aimed at gathering contributions from the most influential European groups working in the EAP field. In fact, today Europe hosts the broadest EAP community worldwide. The rapid expansion of the EAP field in Europe, where it historically has strong roots, has stimulated the creation of the 'European Scientific Network for Artificial Muscles—ESNAM', entirely focused on EAPs and gathering the most active research institutes, as well as key industrial developers and end users. The ESNAM network has received financial support from the European COST (Cooperation in Science and Technology) programme (COST Action MP1003), leading to fruitful collaboration, of which some results are showcased in this issue.<br/><br/>This focus issue deals with a number of relevant topics on ionic and electronic EAPs. The contents, which span highly heterogeneous and cross diverse disciplines, such as physics, chemistry, material science and engineering, embrace size scales from nano to macro, and cover different areas, such as new materials, devices and applications.<br/><br/>This collection of papers helps elucidate, on the one hand, how heterogeneous and dynamic the EAP field is in general and, on the other hand, the state of the art of the EAP research in Europe.<br/><br/>We hope that this focus issue might help to stimulate future work in this emerging field of research and generate new applications.

Topics
  • density
  • impedance spectroscopy
  • polymer