People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Van Erps, Jurgen
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2023VCSEL wavelength tunability using controlled mechanical strain
- 2021Increasing the Microfabrication Performance of Synthetic Hydrogel Precursors through Molecular Designcitations
- 20203D direct laser writing of microstructured optical fiber tapers on single-mode fibers for mode-field conversioncitations
- 2018Ultrathin Poly-DL-Lactic Membranes for Corneal Endothelial Transplantation
- 2018Localized optical- quality doping of graphene on silicon waveguides through a TFSA- containing polymer matrixcitations
- 2016Replication of self-centering optical fiber alignment structures using hot embossingcitations
- 2016Hot-embossing replication of self-centering optical fiber alignment structures prototyped by deep proton writingcitations
- 2016Deep proton writing with 12 MeV protons for rapid prototyping of microstructures in polymethylmethacrylatecitations
- 2016Optofluidic multi-measurement system for the online monitoring of lubricant oilcitations
- 2016Design and prototyping of self-centering optical single-mode fiber alignment structurescitations
- 2015Mould insert fabrication of a single-mode fibre connector alignment structure optimized by justified partial metallizationcitations
- 2013Low-coherence interferometry with polynomial interpolation on Compute Unified Device Architectur-enabled graphics processing units
- 2013Gloss, hydrophobicity and surface texture of papers with organic nanoparticle coatings
- 2013B-Calm: An open-source multi-GPU-based 3D-FDTD with multi-pole dispersion for plasmonics
- 2010Populating multi-fiber fiberoptic connectors using an interferometric measurement of fiber tip position and facet quality
- 2010Design and fabrication of embedded micro-mirror inserts for out-of-plane coupling in PCB-level optical interconnects
- 2008Hot embossing of microoptical components prototyped by deep proton writing
- 2008Embedded Micro-Mirror inserts for optical printed circuit boards
- 2008Deep Proton Writing: A tool for rapid prototyping of polymer micro-opto-mechanical modules
- 2007Deep Proton Writing: A tool for rapid prototyping polymer micro-opto-mechanical modules
- 2006Laser Ablation of Parallel Optical Interconnect Waveguides
Places of action
Organizations | Location | People |
---|
article
Design and prototyping of self-centering optical single-mode fiber alignment structures
Abstract
The European Commission's goal of providing each European household with at least a 30 Mb s(-1) Internet connection by 2020 would be facilitated by a widespread deployment of fibre-to-the-home, which would in turn be sped up by the development of connector essential components, such as high-precision alignment features. Currently, the performance of state-of-the-art physical contact optical fiber connectors is limited by the tolerance on the cladding of standard telecom-grade single-mode fiber (SMF), which is typically smaller than +/- 1 mu m. We propose to overcome this limit by developing micro-spring-based self-centering alignment structures (SCAS) for SMF-connectors. We design these alignment structures with robustness and low-cost replication in mind, allowing for large-scale deployment. Both theoretical and finite element analysis (FEA) models are used to determine the optimal dimensions of the beams of which the micro-springs of the SCAS are comprised. Two topologies of the SCAS, consisting of three and four micro-springs respectively, are investigated for two materials: polysulfone (PSU) and polyetherimide (PEI). These materials hold great potential for high-performance fiber connectors while being compatible with low-cost production and with the harsh environmental operation conditions of those connectors. The theory and FEA agree well (<3% difference) for a simple micro-spring. When including a pedestal on the micro-spring (to bring it further away from the fiber) and for shorter spring lengths the agreement worsens. This is due to spring compression effects not being taken into account in our theoretical model. Prototypes are successfully fabricated using deep proton writing and subsequently characterized. The controlled insertion of an SMF in the SCAS is investigated and we determine that a force of 0.11 N is required. The fiber insertion also causes an out-of-plane deformation of the micro-springs in the SCAS of about 7 mu m, which is no problem for robustness according to the FEA model. Finally connector-assemblies are made with the alignment system and we show that an insertion loss down to 0.1 dB is achievable. The prototypes are subsequently used as a sacrificial master for mould fabrication through electroplating with the goal of low-cost replication through hot embossing.