People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Larsen, Niels Bent
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2023Contrast-enhanced ultrasound imaging using capacitive micromachined ultrasonic transducerscitations
- 2022High Resolution Dual Material Stereolithography for Monolithic Microdevicescitations
- 2022Immobilization of Active Antibodies at Polymer Melt Surfaces during Injection Molding
- 20213D printed calibration micro-phantoms for super-resolution ultrasound imaging validationcitations
- 20193D Printed Calibration Micro-phantoms for Validation of Super-Resolution Ultrasound Imagingcitations
- 2015Hydrogen silsesquioxane mold coatings for improved replication of nanopatterns by injection moldingcitations
- 2013Injection molding of high aspect ratio sub-100 nm nanostructurescitations
- 2013Designing CAF-adjuvanted dry powder vaccinescitations
- 2012A Platform for Functional Conductive Polymers
- 2012Micropatterning of Functional Conductive Polymers with Multiple Surface Chemistries in Registercitations
- 2011Enhanced transduction of photonic crystal dye lasers for gas sensing via swelling polymer filmcitations
- 2011Injection molded nanofluidic chips: Fabrication method and functional tests using single-molecule DNA experimentscitations
- 2011Microwave assisted click chemistry on a conductive polymer filmcitations
- 2011Selective gas sensing for photonic crystal lasers
- 2010Fast prototyping of injection molded polymer microfluidic chipscitations
- 2010Nanostructures for all-polymer microfluidic systemscitations
- 2010“Electro-Click” on Conducting Polymer Films
- 2008Novel polymer coatings based on plasma polymerized 2-methoxyethyl acrylate
- 2008Conductive Polymer Functionalization by Click Chemistrycitations
- 2007Micropatterning of a stretchable conductive polymer using inkjet printing and agarose stampingcitations
- 2006On the Injection Molding of Nanostructured Polymer Surfacescitations
- 2001Surface morphology of PS-PDMS diblock copolymer filmscitations
Places of action
Organizations | Location | People |
---|
article
Hydrogen silsesquioxane mold coatings for improved replication of nanopatterns by injection molding
Abstract
We demonstrate the replication of nanosized pillars in polymer (cyclic olefin copolymer) by injection molding using nanostructured thermally cured hydrogen silsesquioxane (HSQ) ceramic coatings on stainless steel mold inserts with mold nanostructures produced by a simple embossing process. At isothermal mold conditions, the average pillar height increases by up to 100% and a more uniform height distribution is observed compared to a traditional metal mold insert. Thermal heat transfer simulations predict that the HSQ film retards the cooling of the polymer melt during the initial stages of replication, thus allowing more time to fill the nanoscale cavities compared to standard metal molds. A monolayer of a fluorinated silane (heptadecafluorotrichlorosilane) deposited on the mold surface reduces the mold/polymer interfacial energy to support demolding of the polymer replica. The mechanical stability of thermally cured HSQ makes it a promising material for nanopattern replication on an industrial scale without the need for slow and energy intensive variotherm processes.