People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Tas, Niels Roelof
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2016Ultra-thin nanochannel-based liquid TEM cell for EELS analysis and high resolution imaging
- 2013Fabrication of 3D fractal structures using nanoscale anisotropic etching of single crystalline siliconcitations
- 2010Combining retraction edge lithography and plasma etching for arbitrary contour nanoridge fabricationcitations
- 2008Fabrication of a silicon oxide stamp by edge lithography reinforced with silicon nitride for nanoimprint lithographycitations
- 2008Monolithics silicon nano-ridge fabrication by edge lithography and wet anisotropic etching of silicon
- 2007Simple technique for direct patterning of nanowires using a nanoslit shadow-maskcitations
- 2005Multifunctional tool for expanding afm-based applicationscitations
- 20041-D nanochannels fabricated in polyimidecitations
- 2003Wet anisotropic etching for fluidic 1d nanochannelscitations
- 2002Wet anisotropic etching for fluidic 1D nanochannels
- 2001Failure mechanisms of pressurized microchannels, model, and experimentscitations
- 2000Failure mechanisms of pressurized microchannels, model and experiments
Places of action
Organizations | Location | People |
---|
article
Fabrication of a silicon oxide stamp by edge lithography reinforced with silicon nitride for nanoimprint lithography
Abstract
The fabrication of a stamp reinforced with silicon nitride is presented for its use in nanoimprint lithography. The fabrication process is based on edge lithography using conventional optical lithography and wet anisotropic etching of 110 silicon wafers. SiO2 nano-ridges of 20 nm in width were fabricated. A silicon rich nitride layer is deposited over the original SiO2 nano-ridges to improve the ridge strength and to achieve a positive tapered shape which is beneficial for nanoimprinting. A replica of the nano-ridges with silicon rich nitride shield is obtained by imprinting the stamp into thermoplastic nanoimprint polymer mr-I 7010E