People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Jadhav, Amol
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
ECDM methods for fluidic interfacing through thin glass substrates and the formation of spherical microcavities
Abstract
Electrochemical discharge machining (ECDM) involves the electrolytic formation of a gas film at a tool electrode with high current density discharges and Joule heating for local material heating and removal. The ECDM process is ideally suited for low density glass through-hole machining for applications such as fluidic interconnection. In this paper, we describe a simple and robust ECDM cell arrangement and present optimum conditions for rapid and reproducible through-hole machining in both 500 mu m thick and fragile 180 mu m thin borosilicate glass substrates. Both anodic and cathodic methods were evaluated and the results offer additional insight into the complex and polarity-dependent mechanisms involved in the ECDM process. The anodic process produces unique spherical cavity microstructures, presenting a new capability for glass microfabrication.