People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Djurabekova, Flyura Gatifovna
University of Helsinki
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (37/37 displayed)
- 2024Solubility of Hydrogen in a WMoTaNbV High-Entropy Alloycitations
- 2024Unveiling the radiation-induced defect production and damage evolution in tungsten using multi-energy Rutherford backscattering spectroscopy in channeling configurationcitations
- 2023Roadmap for focused ion beam technologiescitations
- 2022Biased self-diffusion on Cu surface due to electric field gradientscitations
- 2022Microscopy Investigation on Different Materials After Pulsed High Field Conditioning and Low Energy H-Irradiation
- 2022Simple machine-learned interatomic potentials for complex alloyscitations
- 2021Temperature effect on irradiation damage in equiatomic multi-component alloyscitations
- 2021Origin of increased helium density inside bubbles in Ni(1-x)Fex alloyscitations
- 2021Modeling refractory high-entropy alloys with efficient machine-learned interatomic potentialscitations
- 2021Machine-learning interatomic potential for W-Mo alloyscitations
- 2020Segregation of Ni at early stages of radiation damage in NiCoFeCr solid solution alloyscitations
- 2020Insights into the primary radiation damage of silicon by a machine learning interatomic potentialcitations
- 2020Application of artificial neural networks for rigid lattice kinetic Monte Carlo studies of Cu surface diffusioncitations
- 2020Tungsten migration energy barriers for surface diffusioncitations
- 2019Ab initio calculation of field emission from metal surfaces with atomic-scale defectscitations
- 2019Atomic-level heterogeneity and defect dynamics in concentrated solid-solution alloyscitations
- 2019Structural properties of protective diamond-like-carbon thin films grown on multilayer graphenecitations
- 2019Radiation stability of nanocrystalline single-phase multicomponent alloyscitations
- 2018Absence of single critical dose for the amorphization of quartz under ion irradiationcitations
- 2018Simulations of surface stress effects in nanoscale single crystalscitations
- 2018Migration barriers for surface diffusion on a rigid latticecitations
- 2018Au nanowire junction breakup through surface atom diffusioncitations
- 2017Probing electron beam effects with chemoresistive nanosensors during in situ environmental transmission electron microscopycitations
- 2017Local segregation versus irradiation effects in high-entropy alloyscitations
- 2017Thermal Oxidation of Size-Selected Pd Nanoparticles Supported on CuO Nanowirescitations
- 2016Atomistic modeling of metal surfaces under high electric fieldscitations
- 2016Ru/Al Multilayers Integrate Maximum Energy Density and Ductility for Reactive Materialscitations
- 2016Dependence of short and intermediate-range order on preparation in experimental and modeled pure a-Sicitations
- 2016Long-term stability of Cu surface nanotipscitations
- 2015The as-deposited structure of co-sputtered Cu-Ta alloys, studied by X-ray diffraction and molecular dynamics simulationscitations
- 2015Surface segregation in chromium-doped NiCr alloy nanoparticles and its effect on their magnetic behaviorcitations
- 2015Ion-solid interactions at the extremes of electronic energy losscitations
- 2015Modification of Pt/Co/Pt film properties by ion irradiationcitations
- 2014Effect of ion irradiation on structural properties of Cu64Zr36 metallic glasscitations
- 2013Radiation effects in nuclear materialscitations
- 2009Amorphization of Ge nanocrystals embedded in amorphous silica under ion irradiationcitations
- 2008Atomistic simulation of the interface structure of Si nanocrystals embedded in amorphous silicacitations
Places of action
Organizations | Location | People |
---|
article
Long-term stability of Cu surface nanotips
Abstract
<p>Sharp nanoscale tips on the metal surfaces of electrodes enhance locally applied electric fields. Strongly enhanced electric fields trigger electron field emission and atom evaporation from the apexes of nanotips. Together, these processes may explain electric discharges in the form of small local arcs observed near metal surfaces in the presence of electric fields, even in ultra-high vacuum conditions. In the present work, we investigate the stability of nanoscale tips by means of computer simulations of surface diffusion processes on copper, the main material used in high-voltage electronics. We study the stability and lifetime of thin copper (Cu) surface nanotips at different temperatures in terms of diffusion processes. For this purpose we have developed a surface kinetic Monte Carlo (KMC) model where the jump processes are described by tabulated precalculated energy barriers. We show that tall surface features with high aspect ratios can be fairly stable at room temperature. However, the stability was found to depend strongly on the temperature: 13 nm nanotips with the major axes in the <110 > crystallographic directions were found to flatten down to half of the original height in less than 100 ns at temperatures close to the melting point, whereas no significant change in the height of these nanotips was observed after 10 mu s at room temperature. Moreover, the nanotips built up along the <110 > crystallographic directions were found to be significantly more stable than those oriented in the <100 > or <111 > crystallographic directions. The proposed KMC model has been found to be well-suited for simulating atomic surface processes and was validated against molecular dynamics simulation results via the comparison of the flattening times obtained by both methods. We also note that the KMC simulations were two orders of magnitude computationally faster than the corresponding molecular dynamics calculations.</p>