People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Zekonyte, Jurgita
University of Portsmouth
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2022Investigating the Effects of H2O Interaction with Rainscreen Façade ACMs During Fire Exposurecitations
- 2021The effect of temperature on the erosion of polyurethane coatings for wind turbine leading edge protectioncitations
- 2021Wear of 17-4 PH stainless steel patterned surfaces fabricated using selective laser meltingcitations
- 2020Characterization of Nano-Mechanical, Surface and Thermal Properties of Hemp Fiber-Reinforced Polycaprolactone (HF/PCL) Biocompositescitations
- 2020Planning for metal additive manufacturingcitations
- 2020Structure and mechanical properties of Ce-La alloys containing 3- 10 wt. % Lacitations
- 2016Titanate nanotubes for reinforcement of a poly(ethylene oxide)/chitosan polymer matrixcitations
- 2016Titanate nanotubes for reinforcement of a poly(ethylene oxide)/chitosan polymer matrixcitations
- 2016Titanate nanotubes for reinforcement of a poly(ethylene oxide)/chitosan polymer matrixcitations
- 2015Friction force microscopy analysis of self-adaptive W-S-C coatings: nanoscale friction and wearcitations
- 2015Friction force microscopy analysis of self-adaptive W-S-C coatings:nanoscale friction and wearcitations
- 2015Friction force microscopy analysis of self-adaptive W-S-C coatingscitations
- 2014Nanomechanical assessment of human and murine collagen fibrils via atomic force microscopy cantilever-based nanoindentationcitations
- 2014WS2 nanoparticles - potential replacement for ZDDP and friction modifier additivescitations
- 2014Frictional properties of self-adaptive chromium doped tungsten-sulfur-carbon coatings at nanoscalecitations
- 2009Angle resolved XPS characterization of cationic polyacrylamidescitations
- 2006Defect formation and transport in La0.95Ni0.5Ti0.5O3-δcitations
- 2005Interfacial effects on the electrical properties of multiferroic BiFeO3/Pt/Si thin film heterostructurescitations
- 2005Tailoring of the PS surface with low energy ionscitations
- 2004Structural and chemical surface modification of polymers by low-energy ions and influence on nucleation, growth and adhesion of noble metals
- 2003Etching rate and structural modification of polymer films during low energy ion irradiationcitations
- 2003Mechanisms of argon ion-beam surface modification of polystyrenecitations
Places of action
Organizations | Location | People |
---|
article
Titanate nanotubes for reinforcement of a poly(ethylene oxide)/chitosan polymer matrix
Abstract
Soft polyethylene oxide/chitosan mixtures, reinforced with hard titanate nanotubes (TiNT) by co-precipitation from aqueous solution, have been used to produce compact coatings by the “drop-cast” method, using water soluble polyethylene oxide (PEO) polymer and stable, aqueous colloidal solutions of TiNT. The effects of the nanotube concentration and their length on the hardness and modulus of the prepared composite have been studied using nanoindentation and nanoscratch techniques. The uniformity of TiNT dispersion within the polymer matrix has been studied using transmission electron microscopy (TEM). A remarkable increase in hardness and reduced Young’s modulus of the composites, compared to pure polymer blends, has been observed at a TiNT concentration of 25 wt %. The short (up to 30 minutes) ultrasound treatment of aqueous solutions containing polymers and a colloidal TiNT mixture prior to drop casting has resulted in some improvements in both hardness and reduced Young’s modulus of dry composite films, probably due to a better dispersion of ceramic nanotubes within the matrix. However, further (more than 1 hour) treatment of the mixture with ultrasound resulted in a deterioration of the mechanical properties of the composite accompanied by a shortening of the nanotubes, as observed by the TEM.