People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Engberg, Sara Lena Josefin
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (29/29 displayed)
- 2023Advances in the one-step synthesis of 2D and 3D sulfide materials grown by pulsed laser deposition assisted by a sulfur thermal crackercitations
- 2022Silver-substituted (Ag1-xCux)2ZnSnS4 solar cells from aprotic molecular inkscitations
- 2022Tuning the band gap of CdS in CZTS/CdS solar cells
- 2022The effect of soft-annealing on sputtered Cu2ZnSnS4 thin-film solar cellscitations
- 2022A facile strategy for the growth of high-quality tungsten disulfide crystals mediated by oxygen-deficient oxide precursorscitations
- 2022Solution-processed CZTS and its n-layers
- 2020Energy band alignment at the heterointerface between CdS and Ag-alloyed CZTScitations
- 2020Energy band alignment at the heterointerface between CdS and Ag-alloyed CZTScitations
- 2020Monolithic thin-film chalcogenide–silicon tandem solar cells enabled by a diffusion barriercitations
- 2020Persistent Double-Layer Formation in Kesterite Solar Cells: A Critical Reviewcitations
- 2020Persistent Double-Layer Formation in Kesterite Solar Cells: A Critical Reviewcitations
- 2019Thin films of CZTS and CZTO for solar cells produced by pulsed laser deposition
- 2019Thin films of CZTS and CZTO for solar cells produced by pulsed laser deposition
- 2018Liquid phase assisted grain growth in Cu2ZnSnS4 nanoparticle thin films by alkali element incorporationcitations
- 2017Investigation of Cu 2 ZnSnS 4 nanoparticles for thin-film solar cell applicationscitations
- 2017The effect of dopants on grain growth and PL in CZTS nanoparticle thin films for solar cell applications
- 2017Na-assisted grain growth in CZTS nanoparticle thin films for solar cell applications
- 2017Spray-coated ligand-free Cu2ZnSnS4 nanoparticle thin films
- 2017Investigation of Cu2ZnSnS4 nanoparticles for thin-film solar cell applicationscitations
- 2017Spray-coated Cu2ZnSnS4 thin films for large-scale photovoltaic applications
- 2016High frequency pulse anodising of magnetron sputtered Al–Zr and Al–Ti Coatingscitations
- 2016Cu2ZnSnS4 Nanoparticle Absorber Layers for Thin-Film Solar Cells
- 2016Synthesis of ligand-free CZTS nanoparticles via a facile hot injection routecitations
- 2015Optimized Packing Density of Large CZTS Nanoparticles Synthesized by Hot-injection for Thin Film Solar Cells.
- 2015Large CZTS Nanoparticles Synthesized by Hot-Injection for Thin Film Solar Cells.
- 2015Synthesis of large CZTSe nanoparticles through a two-step hot-injection methodcitations
- 2014Appearance of anodised aluminium: Effect of alloy composition and prior surface finishcitations
- 2014Annealing in sulfur of CZTS nanoparticles deposited through doctor blading
- 2014Study of Grain Growth of CZTS Nanoparticles Annealed in Sulfur Atmosphere
Places of action
Organizations | Location | People |
---|
article
Synthesis of ligand-free CZTS nanoparticles via a facile hot injection route
Abstract
Single-phase, ligand-free Cu2ZnSnS4 (CZTS) nanoparticles that can be dispersed in polar solvents are desirable for thin film solar cell fabrication, since water can be used as the solvent for the nanoparticle ink. In this work, ligand-free nanoparticles were synthesized using a simple hot injection method and the precursor concentration in the reaction medium was tuned to control the final product. The as-synthesized nanoparticles were characterized using various techniques, and were found to have a near-stoichiometric composition and a phase-pure kesterite crystal structure. No secondary phases were detected with Raman spectroscopy or scanning transmission electron microscopy energy dispersive x-ray spectroscopy. Furthermore, high resolution transmission electron microscopy showed large-sized nanoparticles with an average diameter of 23 nm ± 11 nm. This approach avoids all organic materials and toxic solvents that otherwise could hinder grain growth and limit the deposition techniques. In addition the synthesis route presented here results in nanoparticles of a large size compared to other ligand-free CZTS nanoparticles, due to the high boiling point of the solvents selected. Large particle size in CZTS nanoparticle solar cells may lead to a promising device performance. The results obtained demonstrate the suitability of the synthesized nanoparticles for application in low cost thin film solar cells.