People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Österbacka, Ronald
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2021Fluorination of pyrene-based organic semiconductors enhances the performance of light emitting diodes and halide perovskite solar cellscitations
- 2020Fluorination of pyrene-based organic semiconductors enhances the performance of light emitting diodes and halide perovskite solar cellscitations
- 2020Fluorination of pyrene-based organic semiconductors enhances the performance of light emitting diodes and halide perovskite solar cellscitations
- 2020Investigation of well-defined pinholes in TiO 2 electron selective layers used in planar heterojunction perovskite solar cellscitations
- 2020Investigation of well-defined pinholes in TiO2 electron selective layers used in planar heterojunction perovskite solar cellscitations
- 2019Eco-friendly and low-cost phenothiazine-based hole-transporting material for high performance perovskite solar cells
- 2017Impact of Film Thickness of Ultrathin Dip-Coated Compact TiO2 Layers on the Performance of Mesoscopic Perovskite Solar Cellscitations
- 2014Impact of humidity on functionality of on-paper printed electronicscitations
- 2013Printability of functional inks on multilayer curtain coated papercitations
- 2012IR-sintering of ink-jet printed metal-nanoparticles on papercitations
- 2011Towards paper electronics - printing transistors on paper in a roll-to-roll process
- 2010Organic Spintronicscitations
- 2008Tuning the electrical switching of polymer/fullerene nanocomposite thin film devices by control of morphologycitations
- 2008Roll-to-Roll Fabrication of Bulk Heterojunction plastic solar cells using the reverse gravure coating techniquecitations
- 2008Organic memory using [6,6]-phenyl-C 61 butyric acid methyl ester:Morphology, thickness and concentration dependence studiescitations
- 2008Roll-to-roll fabrication of bulk heterojunction plastic solar cells using the reverse gravure coating techniquecitations
- 2007Metallic nanoparticles in a polymeric matrix
- 2007Metallic nanoparticles in a polymeric matrix:Electrical impedance switching and negative differential resistance
- 2005A novel method to orient semiconducting polymer filmscitations
Places of action
Organizations | Location | People |
---|
article
Impact of humidity on functionality of on-paper printed electronics
Abstract
A multilayer coated paper substrate, combining barrier and printability properties was manufactured utilizing a pilot-scale slide curtain coating technique. The coating structure consists of a thin mineral pigment layer coated on top of a barrier layer. The surface properties, i.e. smoothness and surface porosity, were adjusted by the choice of calendering parameters. The influence of surface properties on the fine line printability and conductivity of inkjet-printed silver lines was studied. Surface roughness played a significant role when printing narrow lines, increasing the risk of defects and discontinuities, whereas for wider lines the influence of surface roughness was less critical. A smooth, calendered surface resulted in finer line definition, i.e. less edge raggedness. Dimensional stability and its influence on substrate surface properties as well as on the functionality of conductive tracks and transistors were studied by exposure to high/low humidity cycles. The barrier layer of the multilayer coated paper reduced the dimensional changes and surface roughness increase caused by humidity and helped maintain the conductivity of the printed tracks. Functionality of a printed transistor during a short, one hour humidity cycle was maintained, but a longer exposure to humidity destroyed the non-encapsulated transistor.