People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Trofod, Thue
Danish Technological Institute
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2016In situ X-ray scattering of perovskite solar cell active layers roll-to-roll coated on flexible substratescitations
- 2015Matrix Organization and Merit Factor Evaluation as a Method to Address the Challenge of Finding a Polymer Material for Roll Coated Polymer Solar Cellscitations
- 2015Upscaling of Perovskite Solar Cells: Fully Ambient Roll Processing of Flexible Perovskite Solar Cells with Printed Back Electrodescitations
- 2014All-Solution-Processed, Ambient Method for ITO-Free, Roll-Coated Tandem Polymer Solar Cells using Solution- Processed Metal Filmscitations
- 2013Roll-to-Roll Inkjet Printing and Photonic Sintering of Electrodes for ITO Free Polymer Solar Cell Modules and Facile Product Integrationcitations
- 2013All polymer photovoltaics: From small inverted devices to large roll-to-roll coated and printed solar cellscitations
- 2012Silver front electrode grids for ITO-free all printed polymer solar cells with embedded and raised topographies, prepared by thermal imprint, flexographic and inkjet roll-to-roll processescitations
- 2012Simultaneous multilayer formation of the polymer solar cell stack using roll-to-roll double slot-die coating from watercitations
- 2011Aqueous Processing of Low-Band-Gap Polymer Solar Cells Using Roll-to-Roll Methodscitations
- 2011Generation of native polythiophene/PCBM composite nanoparticles via the combination of ultrasonic micronization of droplets and thermocleaving from aqueous dispersioncitations
Places of action
Organizations | Location | People |
---|
article
Generation of native polythiophene/PCBM composite nanoparticles via the combination of ultrasonic micronization of droplets and thermocleaving from aqueous dispersion
Abstract
We report the preparation of native polythiophene (n-PT)/[6, 6]-phenyl-C61-butyric acid methyl ester (PCBM) composite nanoparticles from a poly[3-(2-methylhex-2-yl)oxy-carbonyldithiophene] (P3MHOCT)/PCBM aqueous dispersion prepared from an ultrasonically generated emulsion. The subsequent steps involve both ultrasonic generation of microdroplets in argon as a carrier gas and drying followed by thermocleaving of the P3MHOCT component in the gas phase. The chemical transition from P3MHOCT to n-PT was confirmed by Fourier transform infrared (FTIR) spectroscopy. The morphology and size of n-PT/PCBM nanoparticles were determined by atomic force microscopy (AFM), small-angle x-ray scattering (SAXS) and grazing incidence SAXS (GISAXS), giving an average size of ~ 140 nm. The GISAXS results reveal that n-PT/PCBM nanoparticles pack in an ordered structure as opposed to the P3MHOCT/PCBM nanoparticles. The successful vapour-phase preparation of phase-separated n-PT/PCBM nanoparticles provides a new route to all-aqueous processing of conjugated materials relevant to efficient polymer solar cells with long operational stability. The use of ultrasound was involved in both liquid and gas phases demonstrating it as a low-cost processing method.