People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
De Villoria, Roberto Guzman
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2012Nanocomposite Flexible Pressure Sensor for Biomedical Applicationscitations
- 2012Flexible Pressure Sensors: Modeling and Experimental Characterizationcitations
- 2012Aligned Carbon Nanotube Reinforcement of Aerospace Carbon Fiber Composites: Substructural Strength Evaluation for Aerostructure Applications
- 2011Multi-physics damage sensing in nano-engineered structural compositescitations
- 2011Continuous Growth of Vertically Aligned Carbon Nanotubes
- 2011Continuous Growth of Vertically Aligned Carbon Nanotubes Forests
- 2011Carbon Nanotube (CNT) Enhancements for Aerosurface State Awareness
- 2010Tomographic Electrical Resistance-based Damage Sensing in Nano-Engineered Composite Structures
- 2010Thermal and Electrical Transport in Hybrid Woven Composites Reinforced with Aligned Carbon Nanotubes
- 2009Load Transfer Analysis in Short Carbon Fibers with Radially-Aligned Carbon Nanotubes Embedded in a Polymer Matrix
Places of action
Organizations | Location | People |
---|
article
Multi-physics damage sensing in nano-engineered structural composites
Abstract
Non-destructive evaluation techniques can offer viable diagnostic and prognostic routes to mitigating failures in engineered structures such as bridges, buildings and vehicles. However, existing techniques have significant drawbacks, including poor spatial resolution and limited in situ capabilities. We report here a novel approach where structural advanced composites containing electrically conductive aligned carbon nanotubes (CNTs) are ohmically heated via simple electrical contacts, and damage is visualized via thermographic imaging. Damage, in the form of cracks and other discontinuities, usefully increases resistance to both electrical and thermal transport in these materials, which enables tomographic full-field damage assessment in many cases. Characteristics of the technique include the ability for real-time measurement of the damage state during loading, low-power operation (e.g. 15 °C rise at 1 W), and beyond state-of-the-art spatial resolution for sensing damage in composites. The enhanced thermographic technique is a novel and practical approach for in situ monitoring to ascertain structural health and to prevent structural failures in engineered structures such as aerospace and automotive vehicles and wind turbine blades, among others. ; Linda and Richard Hardy Fellowship ; MIT-Spain/La Cambra de Barcelona