People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Munroe, P.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2016Chemical bonding states and solar selective characteristics of unbalanced magnetron sputtered TixM1−x−yNyfilmscitations
- 2015Mapping strain modulated electronic structure perturbations in mixed phase bismuth ferrite thin filmscitations
- 2014Phase transformation pathways in amorphous germanium under indentation pressurecitations
- 2011Chemistry of Ruddlesden-Popper planar faults at a ferroelectric-ferromagnet perovskite interfacecitations
- 2009Nanoindentation of ion-implanted crystalline germaniumcitations
- 2009Effect of microstructure upon elastic behaviour of human tooth enamelcitations
- 2008Thickness-dependent phase transformation in nanoindented germanium thin filmscitations
- 2006Phase transformations induced by spherical indentation in ion-implanted amorphous siliconcitations
- 2004Phase transformations induced in relaxed amorphous silicon by indentation at room temperaturecitations
- 2001Mechanical deformation in silicon by micro-indentationcitations
- 2000Transmission electron microscopy observation of deformation microstructure under spherical indentation in siliconcitations
Places of action
Organizations | Location | People |
---|
article
Thickness-dependent phase transformation in nanoindented germanium thin films
Abstract
<p>We investigate the mechanical response of 50-600 nm epitaxial Ge films on a Si substrate using nanoindentation with a nominally spherical (R≈4.3 νm) diamond tip. The inelastic deformation mechanism is found to depend critically on the film thickness. Sub-100 nm Ge films deform by pressure-induced phase transformation, whereas thicker films deform only by shear-induced dislocation slip and twinning. Nanoindentation fracture response is similarly dependent on film thickness. Elastic stress modelling shows that differing stress modes vary in their spatial distribution, and consequently the film thickness governs the stress state in the film, in conjunction with the radius of the nanoindenter tip. This opens the prospect of tailoring the contact response of Ge and related materials in thin film form by varying film thickness and indenter radius.</p>