People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Goyal, Amit
University of Lausanne
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
Places of action
Organizations | Location | People |
---|
article
Electrical properties of epoxy resin based nano-composites
Abstract
We investigate the electrical properties of composite materials prepared as nano- and sub-micron-scale metal-oxide particles embedded in a commercial resin. The filler particles are barium titanate and calcium copper titanate. The physical and structural characteristics of the constituents and the fabricated composites are reported. Electrical characterization of the composite samples is performed using time- and frequency-domain dielectric spectroscopy techniques. The electrical breakdown strength of samples with nano- and sub-micron-sized particles have better electrical insulation properties than the unfilled resin.