Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ottevaere, Heidi

  • Google
  • 16
  • 53
  • 86

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (16/16 displayed)

  • 2023Freeform beam shaping optics for large-size 3D scaffold fabrication with high accuracycitations
  • 2022Fabrication of large-scale scaffolds with microscale features using light sheet stereolithography12citations
  • 2021The mechanism of thermal oxide film formation on low Cr martensitic stainless steel and its behavior in fluoride-based pickling solution in conversion treatment15citations
  • 2019Study of peak capacities generated by a porous layered radially elongated pillar array column coupled to a nano-LC system7citations
  • 2018Clear to clear laser welding for joining thermoplastic polymers: A comparative study based on physicochemical characterization37citations
  • 2018Ring opening copolymerisation of lactide and mandelide for the development of environmentally degradable polyesters with controllable glass transition temperatures8citations
  • 2016Determination of the radial profile of the photoelastic coefficient of polymer optical fiberscitations
  • 2016Optofluidic multi-measurement system for the online monitoring of lubricant oil1citations
  • 2016Chapter 21 – Biodegradable polyesters: from monomer to applicationcitations
  • 2015Algorithms for determining the radial profile of the photoelastic coefficient in glass and polymer optical fibres6citations
  • 2014On a possible method to measure the radial profile of the photoelastic constant in step-index optical fibercitations
  • 2013Influence of measurement noise on the determination of the radial profile of the photoelastic coefficient in step-index optical fibrescitations
  • 2012Dental composite resins: measuring the polymerization shrinkage using optical fiber Bragg grating sensorcitations
  • 2008Functional polymer materials for optical applicationscitations
  • 2008Deep Proton Writing: A tool for rapid prototyping of polymer micro-opto-mechanical modulescitations
  • 2007Deep Proton Writing: A tool for rapid prototyping polymer micro-opto-mechanical modulescitations

Places of action

Chart of shared publication
Nie, Yunfeng
2 / 2 shared
Madrid Sánchez, Alejandro
2 / 2 shared
Duerr, Fabian
2 / 2 shared
Thienpont, Hugo
13 / 83 shared
Nabizadeh, Mohaddese
1 / 5 shared
Goderis, Steven
1 / 3 shared
Terryn, Herman
2 / 124 shared
Boissy, Clement
1 / 1 shared
Baert, Kitty
1 / 23 shared
Hauffman, Tom
1 / 59 shared
Hara, Takeshi
1 / 1 shared
Futagami, Shunta
1 / 1 shared
Baron, Gino
1 / 12 shared
Desmet, Gert
1 / 12 shared
Malsche, Wim De
2 / 4 shared
Van Hemelrijck, Danny
1 / 126 shared
Dubruel, Peter
3 / 31 shared
Pelsmaeker, Jens De
1 / 1 shared
Van Vlierberghe, Sandra
3 / 27 shared
Graulus, Geert-Jan
3 / 6 shared
Van Hecke, Kristof
1 / 19 shared
Van Herck, Niels
1 / 1 shared
Devreese, Bart
1 / 1 shared
Van Driessche, Gonzalez
1 / 1 shared
Merken, P.
4 / 4 shared
Acheroy, S.
4 / 5 shared
Geernaert, Thomas
5 / 37 shared
Berghmans, Francis
4 / 45 shared
Mignani, A. G.
1 / 1 shared
Van Erps, Jurgen
3 / 21 shared
Vervaeke, Michael
3 / 7 shared
Callewaert, Manly Nestor
1 / 1 shared
Verschooten, Tom
1 / 1 shared
Ciacherri, L.
1 / 1 shared
Billiet, Thomas
1 / 1 shared
Mégret, Patrice
1 / 13 shared
Chah, Karima
1 / 10 shared
Tabak, Marc
1 / 1 shared
Nasilowski, Tomasz
1 / 11 shared
Volder, M. De
1 / 1 shared
Reynaerts, D.
1 / 2 shared
Daele, P. Van
1 / 5 shared
Steenberge, G. Van
1 / 5 shared
Dubruel, P.
1 / 8 shared
Schacht, E.
1 / 5 shared
Gijseghem, T. Van
1 / 1 shared
Hermanne, Alex
2 / 2 shared
Onate, Virginia Gomez
2 / 2 shared
Debaes, Christof
2 / 8 shared
Vynck, Pedro
2 / 2 shared
Overmeire, Sara Van
2 / 2 shared
Desmet, Lieven
2 / 2 shared
Krajewski, Rafal
1 / 2 shared
Chart of publication period
2023
2022
2021
2019
2018
2016
2015
2014
2013
2012
2008
2007

Co-Authors (by relevance)

  • Nie, Yunfeng
  • Madrid Sánchez, Alejandro
  • Duerr, Fabian
  • Thienpont, Hugo
  • Nabizadeh, Mohaddese
  • Goderis, Steven
  • Terryn, Herman
  • Boissy, Clement
  • Baert, Kitty
  • Hauffman, Tom
  • Hara, Takeshi
  • Futagami, Shunta
  • Baron, Gino
  • Desmet, Gert
  • Malsche, Wim De
  • Van Hemelrijck, Danny
  • Dubruel, Peter
  • Pelsmaeker, Jens De
  • Van Vlierberghe, Sandra
  • Graulus, Geert-Jan
  • Van Hecke, Kristof
  • Van Herck, Niels
  • Devreese, Bart
  • Van Driessche, Gonzalez
  • Merken, P.
  • Acheroy, S.
  • Geernaert, Thomas
  • Berghmans, Francis
  • Mignani, A. G.
  • Van Erps, Jurgen
  • Vervaeke, Michael
  • Callewaert, Manly Nestor
  • Verschooten, Tom
  • Ciacherri, L.
  • Billiet, Thomas
  • Mégret, Patrice
  • Chah, Karima
  • Tabak, Marc
  • Nasilowski, Tomasz
  • Volder, M. De
  • Reynaerts, D.
  • Daele, P. Van
  • Steenberge, G. Van
  • Dubruel, P.
  • Schacht, E.
  • Gijseghem, T. Van
  • Hermanne, Alex
  • Onate, Virginia Gomez
  • Debaes, Christof
  • Vynck, Pedro
  • Overmeire, Sara Van
  • Desmet, Lieven
  • Krajewski, Rafal
OrganizationsLocationPeople

article

Optofluidic multi-measurement system for the online monitoring of lubricant oil

  • Ottevaere, Heidi
  • Mignani, A. G.
  • Van Erps, Jurgen
  • Vervaeke, Michael
  • Thienpont, Hugo
  • Callewaert, Manly Nestor
  • Malsche, Wim De
  • Verschooten, Tom
  • Ciacherri, L.
Abstract

We show a detection system that simultaneously allows absorbance (ABS), laser-induced fluorescence (LIF) and scattering detection excited by two different laser sources at 405 nm and 450 nm. The heart of the system consists of a mass manufacturable polymer optofluidic chip. The chip is mounted in an optical detection assembly that aligns the chip to the rest of the system, seals the chip from leakage, fixes the position and connects the channels to the rest of the fluidic system. The fluidics exhibit a reduced susceptibility to perturbations caused by air bubbles, this is accomplished by making use of a serpentine channel layout. For coumarin 480, detection limits of 100 nM and 10 pM are observed for ABS and LIF respectively. An effective detection range of 4000 down to 1 nephelometric turbidity units is shown for the detection of scattered light. The viscous behaviour of the sample is analysed by a secondary FFT processing step of which the result is further processed by multivariate data analysis. This allows the identification of samples and prediction of their quality parameters. We apply this system for the monitoring of lubricant oil, demonstrating its ability to compete with spectroscopic detection techniques. The low-cost approach and multi-measurement architecture shown in this paper pave the way for miniaturized on-line monitoring of liquids in an industrial environment.

Topics
  • impedance spectroscopy
  • polymer
  • susceptibility