Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Vervaeke, Michael

  • Google
  • 7
  • 35
  • 8

Vrije Universiteit Brussel

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (7/7 displayed)

  • 2023Design and manufacturing of aspherical GaAs-SILs for a versatile optical semiconductor failure analysis systemcitations
  • 2016Deep proton writing with 12 MeV protons for rapid prototyping of microstructures in polymethylmethacrylate3citations
  • 2016Optofluidic multi-measurement system for the online monitoring of lubricant oil1citations
  • 2015Laser ablation of micro-photonic structures for efficient light collection and distribution4citations
  • 2010Populating multi-fiber fiberoptic connectors using an interferometric measurement of fiber tip position and facet qualitycitations
  • 2008Deep Proton Writing: A tool for rapid prototyping of polymer micro-opto-mechanical modulescitations
  • 2007Deep Proton Writing: A tool for rapid prototyping polymer micro-opto-mechanical modulescitations

Places of action

Chart of shared publication
Terada, Hirotoshi
1 / 3 shared
Rosseel, Dries
1 / 2 shared
Arata, Ikuo
1 / 1 shared
Thienpont, Hugo
7 / 83 shared
Gokce, Berkcan
1 / 1 shared
Van Erps, Jurgen
5 / 21 shared
Meyer, Pascal
1 / 3 shared
Guttmann, Markus
1 / 11 shared
Dubruel, Peter
1 / 31 shared
Van Vlierberghe, Sandra
1 / 27 shared
Ebraert, Evert
1 / 4 shared
Ottevaere, Heidi
3 / 16 shared
Mignani, A. G.
1 / 1 shared
Callewaert, Manly Nestor
1 / 1 shared
Malsche, Wim De
1 / 4 shared
Verschooten, Tom
1 / 1 shared
Ciacherri, L.
1 / 1 shared
Smet, H. De
1 / 1 shared
Shang, Xiaobing
1 / 2 shared
Desmet, A.
1 / 1 shared
Joshi, P.
1 / 2 shared
Smet, J. De
1 / 1 shared
Steenberge, G. Van
1 / 5 shared
Put, S. Van
1 / 1 shared
Cuypers, D.
1 / 1 shared
Pakula, A.
1 / 2 shared
Tomczewski, S.
1 / 2 shared
Salbut, L.
1 / 2 shared
Hermanne, Alex
2 / 2 shared
Onate, Virginia Gomez
2 / 2 shared
Debaes, Christof
2 / 8 shared
Vynck, Pedro
2 / 2 shared
Overmeire, Sara Van
2 / 2 shared
Desmet, Lieven
2 / 2 shared
Krajewski, Rafal
1 / 2 shared
Chart of publication period
2023
2016
2015
2010
2008
2007

Co-Authors (by relevance)

  • Terada, Hirotoshi
  • Rosseel, Dries
  • Arata, Ikuo
  • Thienpont, Hugo
  • Gokce, Berkcan
  • Van Erps, Jurgen
  • Meyer, Pascal
  • Guttmann, Markus
  • Dubruel, Peter
  • Van Vlierberghe, Sandra
  • Ebraert, Evert
  • Ottevaere, Heidi
  • Mignani, A. G.
  • Callewaert, Manly Nestor
  • Malsche, Wim De
  • Verschooten, Tom
  • Ciacherri, L.
  • Smet, H. De
  • Shang, Xiaobing
  • Desmet, A.
  • Joshi, P.
  • Smet, J. De
  • Steenberge, G. Van
  • Put, S. Van
  • Cuypers, D.
  • Pakula, A.
  • Tomczewski, S.
  • Salbut, L.
  • Hermanne, Alex
  • Onate, Virginia Gomez
  • Debaes, Christof
  • Vynck, Pedro
  • Overmeire, Sara Van
  • Desmet, Lieven
  • Krajewski, Rafal
OrganizationsLocationPeople

article

Optofluidic multi-measurement system for the online monitoring of lubricant oil

  • Ottevaere, Heidi
  • Mignani, A. G.
  • Van Erps, Jurgen
  • Vervaeke, Michael
  • Thienpont, Hugo
  • Callewaert, Manly Nestor
  • Malsche, Wim De
  • Verschooten, Tom
  • Ciacherri, L.
Abstract

We show a detection system that simultaneously allows absorbance (ABS), laser-induced fluorescence (LIF) and scattering detection excited by two different laser sources at 405 nm and 450 nm. The heart of the system consists of a mass manufacturable polymer optofluidic chip. The chip is mounted in an optical detection assembly that aligns the chip to the rest of the system, seals the chip from leakage, fixes the position and connects the channels to the rest of the fluidic system. The fluidics exhibit a reduced susceptibility to perturbations caused by air bubbles, this is accomplished by making use of a serpentine channel layout. For coumarin 480, detection limits of 100 nM and 10 pM are observed for ABS and LIF respectively. An effective detection range of 4000 down to 1 nephelometric turbidity units is shown for the detection of scattered light. The viscous behaviour of the sample is analysed by a secondary FFT processing step of which the result is further processed by multivariate data analysis. This allows the identification of samples and prediction of their quality parameters. We apply this system for the monitoring of lubricant oil, demonstrating its ability to compete with spectroscopic detection techniques. The low-cost approach and multi-measurement architecture shown in this paper pave the way for miniaturized on-line monitoring of liquids in an industrial environment.

Topics
  • impedance spectroscopy
  • polymer
  • susceptibility