People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Krztoń-Maziopa, Anna
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2020Electrocrystallization of nanostructured iron-selenide films for potential application in dye sensitized solar cellscitations
- 2020Bismuth and oxygen valencies and superconducting state properties in Ba<inf>1-x</inf>K<inf>x</inf>BiO<inf>3</inf> superconductorcitations
- 2018Thermally induced structural transformations of linear coordination polymers based on aluminum tris(diorganophosphates)citations
- 2018Magnetic imaging of antiferromagnetic and superconducting phases in RbxFe2-ySe2 crystalscitations
- 2016Structural disorder in Lix(C5H5N)yFe2-zSe2 and CsxFe2-zSe2 superconductors studied by Mössbauer spectroscopycitations
- 2016Superconductivity in alkali metal intercalated iron selenidescitations
- 2014Compressibility and pressure-induced disorder in superconducting phase-separated Cs0.72Fe1.57Se2citations
- 2013Photoemission and muon spin relaxation spectroscopy of the iron-based Rb0.77Fe1.61Se2 superconductor: Crucial role of the cigar-shaped Fermi surfacecitations
- 2012Intrinsic crystal phase separation in the antiferromagnetic superconductor RbyFe2-xSe2: a diffraction studycitations
- 2012Single crystal growth of novel alkali metal intercalated iron chalcogenide superconductorscitations
- 2012ER suspensions of composite core-shell microspheres with improved sedimentation stabilitycitations
- 2011Room temperature antiferromagnetic order in superconducting XyFe2−xSe2 (X = Rb, K): a neutron powder diffraction studycitations
- 2011Synthesis and crystal growth of Cs 0.8 (FeSe 0.98 ) 2 : a new iron-based superconductor with T c = 27 Kcitations
- 2011Iron-vacancy superstructure and possible room temperature antiferromagnetic order in superconducting CsyFe2-xSe2citations
- 2011The synthesis, and crystal and magnetic structure of the iron selenide BaFe2Se3 with possible superconductivity at Tc = 11 Kcitations
- 2009Ionically conductive polymers for ER fluid preparation
- 2009Electrorheological fluids containing phosphorylated polystyrene-co-divinylbenzenecitations
- 2006Electrorheological effect in hybrid fluids with liquid crystalline additivescitations
- 2005Electrorheological fluids based on polymer electrolytescitations
- 2005Electrorheological fluids based on modified polyacrylonitrilecitations
- 2005Study of electrorheological properties of poly (p -phenylene) dispersionscitations
Places of action
Organizations | Location | People |
---|
article
Superconductivity in alkali metal intercalated iron selenides
Abstract
Alkali metal intercalated iron selenide superconductors AxFe2−ySe2 (where A = K, Rb, Cs, Tl/K, and Tl/Rb) are characterized by several unique properties, which were not revealed in other superconducting materials. The compounds crystallize in overall simple layered structure with FeSe layers intercalated with alkali metal. The structure turned out to be pretty complex as the existing Fe-vacancies order below ~550 K, which further leads to an antiferromagnetic ordering with Néel temperature fairly above room temperature. At even lower temperatures a phase separation is observed. While one of these phases stays magnetic down to the lowest temperatures the second is becoming superconducting below ~30 K.All these effects give rise to complex relationships between the structure, magnetism and superconductivity. In particular the iron vacancy ordering, linked with a long-range magnetic order and a mesoscopic phase separation, is assumed to be an intrinsic property of the system. Since the discovery of superconductivity in those compounds in 2010 they were investigatedvery extensively. Results of the studies conducted using a variety of experimental techniques and performed during the last five years were published in hundreds of reports. The presentpaper reviews scientific work concerning methods of synthesis and crystal growth, structural and superconducting properties as well as pressure investigations.