People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Akola, Jaakko
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2024Deposited PtGe clusters as active and durable catalysts for CO oxidationcitations
- 2024Graphite nucleation on (Al, Si, Mg)-nitrides : Elucidating the chemical interactions and turbostratic structures in spheroidal graphite cast ironscitations
- 2024Graphite nucleation on (Al, Si, Mg)-nitridescitations
- 2023Machine-learned model Hamiltonian and strength of spin-orbit interaction in strained Mg2X (X = Si, Ge, Sn, Pb)citations
- 2022Machine-learned model Hamiltonian and strength of spin-orbit interaction in strained Mg2X (X = Si, Ge, Sn, Pb)citations
- 2021Comparison of optical response from DFT random phase approximation and a low-energy effective modelcitations
- 2021Comparison of optical response from DFT random phase approximation and a low-energy effective model : Strained phosphorenecitations
- 2020Density functional simulations of pressurized Mg-Zn and Al-Zn alloyscitations
- 2020Strain-engineered widely tunable perfect absorption angle in black phosphorus from first principlescitations
- 2020Synergistic Computational-Experimental Discovery of Highly Selective PtCu Nanocluster Catalysts for Acetylene Semihydrogenationcitations
- 2020Atomistic simulations of early stage clusters in AlMg alloyscitations
- 2019Highly ductile amorphous oxide at room temperature and high strain ratecitations
- 2019Highly ductile amorphous oxide at room temperature and high strain ratecitations
- 2019Ultrahigh-pressure form of Si O2 glass with dense pyrite-type crystalline homologycitations
- 2019Atomistic simulations of early stage clusters in Al–Mg alloyscitations
- 2018Atomistic simulations of early stage clusters in AlMg alloyscitations
- 2016Tuning electronic properties of graphene heterostructures by amorphous-to-crystalline phase transitionscitations
- 2015Structure of amorphous Ag/Ge/S alloys: experimentally constrained density functional studycitations
- 2015The Prototype Phase Change Material Ge2Sb2Te5citations
- 2003Close packing of clusterscitations
- 2001Metallic evolution of small magnesium clusters
Places of action
Organizations | Location | People |
---|
article
Structure of amorphous Ag/Ge/S alloys: experimentally constrained density functional study
Abstract
<p>Density functional/molecular dynamics simulations have been performed to determine structural and other properties of amorphous Ag/Ge/S and Ge/S alloys. In the former, the calculations have been combined with experimental data (x-ray and neutron diffraction, extended x-ray absorption fine structure). Ag/Ge/As alloys have high ionic conductivity and are among the most promising candidates for future memristor technology. We find excellent agreement between the experimental results and large-scale (500 atoms) simulations in Ag/Ge/S, and we compare and contrast the structures of Ge/S and Ag/Ge/S. The calculated electronic structures, vibrational densities of states, ionic mobilities, and cavity distributions of the amorphous materials are discussed and compared with data on crystalline phases where available. The high mobility of Ag in solid state electrolyte applications is related to the presence of cavities and can occur via jumps to a neighbouring vacant site.</p>