People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Chshiev, Mairbek
French National Centre for Scientific Research
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2024Interfacial spin-orbitronic effects controlled with different oxidation levels at the Co|Al interface
- 2024Atomic‐Layer Controlled Transition from Inverse Rashba–Edelstein Effect to Inverse Spin Hall Effect in 2D PtSe<sub>2</sub> Probed by THz Spintronic Emissioncitations
- 2024Large chiral orbital texture and orbital Edelstein effect in Co/Al heterostructurecitations
- 2023From Early Theories of Dzyaloshinskii–Moriya Interactions in Metallic Systems to Today’s Novel Roadscitations
- 2020Low‐Energy Spin Precession in the Molecular Field of a Magnetic Thin Filmcitations
- 2018Significant Dzyaloshinskii–Moriya interaction at graphene–ferromagnet interfaces due to the Rashba effectcitations
- 2018Large-Voltage Tuning of Dzyaloshinskii–Moriya Interactions: A Route toward Dynamic Control of Skyrmion Chiralitycitations
- 2018Controlling Dzyaloshinskii-Moriya Interaction via Chirality Dependent Atomic-Layer Stacking, Insulator Capping and Electric Fieldcitations
- 2017Tailoring magnetic insulator proximity effects in graphene : First-principles calculations
- 2017Modeling anisotropic magnetoresistance in layered antiferromagnetscitations
- 2017Tailoring magnetic insulator proximity effects in graphene: first-principles calculationscitations
- 2016Anatomy and Giant Enhancement of the Perpendicular Magnetic Anisotropy of Cobalt−Graphene Heterostructurescitations
- 2016Direct evidence for minority spin gap in the Co 2 MnSi Heusler compoundcitations
- 2015Graphene spintronics:The European Flagship perspectivecitations
- 2015Graphene spintronics: the European Flagship perspective
- 2015Graphene spintronics: the European Flagship perspectivecitations
- 2015Graphene spintronicscitations
- 2013Bias dependence of tunneling magnetoresistance in magnetic tunnel junctions with asymmetric barrierscitations
- 2012Air-Protected Epitaxial Graphene/Ferromagnet Hybrids Prepared by Chemical Vapor Deposition and Intercalationcitations
Places of action
Organizations | Location | People |
---|
article
Bias dependence of tunneling magnetoresistance in magnetic tunnel junctions with asymmetric barriers
Abstract
The transport properties of magnetic tunnel junctions (MTJs) are very sensitive to interface modifications. In this work we investigate both experimentally and theoretically the effect of asymmetric barrier modifications on the bias dependence of tunneling magnetoresistance (TMR) in single crystal Fe/MgO-based MTJs with (i) one crystalline and one rough interface, and (ii) with a monolayer of O deposited at the crystalline interface. In both cases we observe an asymmetric bias dependence of TMR and a reversal of its sign at large bias. We propose a general model to explain the bias dependence in these and similar systems reported earlier. The model predicts the existence of two distinct TMR regimes: (i) a tunneling regime when the interface is modified with layers of a different insulator, and (ii) a resonant regime when thin metallic layers are inserted at the interface. We demonstrate that in the tunneling regime, negative TMR is due to the high voltage which overcomes the exchange splitting in the electrodes, while the asymmetric bias dependence of TMR is due to the interface transmission probabilities. In the resonant regime, inversion of TMR could happen at zero voltage depending on the alignment of the resonance levels with the Fermi surfaces of the electrodes. Moreover, the model predicts a regime in which TMR has different signs at positive and negative bias, suggesting possibilities of combining memory with logic functions.