Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Jiang, Kaiyun

  • Google
  • 1
  • 3
  • 26

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2010Ab initio study of effects of substitutional additives on the phase stability of γ -alumina26citations

Places of action

Chart of shared publication
Schneider, Jochen M.
1 / 61 shared
Sarakinos, Kostas
1 / 37 shared
Music, Denis
1 / 23 shared
Chart of publication period
2010

Co-Authors (by relevance)

  • Schneider, Jochen M.
  • Sarakinos, Kostas
  • Music, Denis
OrganizationsLocationPeople

article

Ab initio study of effects of substitutional additives on the phase stability of γ -alumina

  • Schneider, Jochen M.
  • Sarakinos, Kostas
  • Music, Denis
  • Jiang, Kaiyun
Abstract

<p>Using ab initio calculations, we have evaluated two structural descriptions of γ -Al<sub>2</sub>O<sub>3</sub>, spinel and tetragonal hausmannite, and explored the relative stability of γ -Al<sub>2</sub>O<sub>3</sub> with respect to α-Al<sub>2</sub>O<sub>3</sub> with 2.5 at.% of Si, Cr, Ti, Sc, and Y additives to identify alloying element induced electronic structure changes that impede the γ to α transition. The total energy calculations indicate that Si stabilizes γ -Al<sub>2</sub>O<sub>3</sub>, while Cr stabilizes α-Al<sub>2</sub>O<sub>3</sub>. As Si is added, a bond length increase in α-Al<sub>2</sub>O<sub>3</sub> is observed, while strong and short Si-O bonds are formed in γ -Al<sub>2</sub>O<sub>3</sub>, consequently stabilizing this phase. On the other hand, Cr additions induce a smaller bond length increase in α-Al<sub>2</sub>O<sub>3</sub> than in γ -Al<sub>2</sub>O<sub>3</sub>, therefore stabilizing the α-phase. The bulk moduli of γ -Al<sub>2</sub>O<sub>3</sub> with these additives show no significant changes. The phase stability and elastic property data discussed here underline the application potential of Si alloyed γ -Al<sub>2</sub>O<sub>3</sub> for applications at elevated temperatures. Furthermore it is evident that the tetragonal hausmannite structure is a suitable description for γ -Al<sub>2</sub>O<sub>3</sub>.</p>

Topics
  • impedance spectroscopy
  • phase
  • phase stability