People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Czarnecki, Piotr
Adam Mickiewicz University in Poznań
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2022Above-room-temperature ferroelectricity and piezoelectric activity of dimethylglycinium-dimethylglycine chloridecitations
- 2012New ferroelectric: Bis-thiourea pyridinium bromide inclusion compoundcitations
- 2012Structures and phase transitions in a new ferroelectric-pyridinium chlorochromate-studied by X-ray diffraction, DSC and dielectric methodscitations
- 2010The neutron diffraction study, calorimetry and spontaneous polarization of pyridinium perrhenate at 350, 300 and 100Kcitations
- 2009Discovery of an intermediate phase in bis-thiourea pyridinium chloride inclusion compound.citations
- 2009Discovery of an intermediate phase in bis-thiourea pyridinium chloride inclusion compoundcitations
- 2008Redetermination of the structure and dielectric properties of bis(thiourea) pyridinium iodide - A new ferroelectric inclusion compoundcitations
- 2007Phase transitions in ferroelectric pyridinium periodide under high pressurecitations
- 2006Structure, phase transitions and dielectric properties of a new inclusion compound of bis-thiourea pyridinium nitrate saltcitations
- 2006Dielectric response of the relaxor ferroelectric Pb(Mg<inf>1/3</inf>Nb <inf>2/3</inf>)O<inf>3</inf> in the nonergodic state after a DC electric field is turned off
- 2005Decoupling of the order-disorder and displacive contributions to the phase transition in NH<inf>4</inf>H(ClH<inf>2</inf>CCOO)<inf>2</inf>citations
- 2005Compositional and pressure effects on the phase transition in ferroelectric NH<inf>4</inf>H(ClH<inf>2</inf>CCOO)<inf>2</inf>
- 2003Effect of hydrostatic pressure on the dielectric response of Pb(Mg 1/3Nb2/3)O3 relaxorcitations
- 2003The neutron diffraction study of pyridinium periodate at 352, 300 and 100 Kcitations
- 20012-5 pyrochlore relaxor ferroelectric Cd<inf>2</inf>Nb<inf>2</inf>O<inf>7</inf> and its Fe<sup>2+</sup>/Fe<sup>3+</sup> modificationscitations
- 2001Structure and dynamics of ferroelectric pyridinium periodatecitations
- 2000High pressure study of cation dynamics in pyridinium Perchloratecitations
- 2000Structure and dielectric properties of ferroelectric pyridinium perrhenate crystalscitations
Places of action
Organizations | Location | People |
---|
article
The neutron diffraction study, calorimetry and spontaneous polarization of pyridinium perrhenate at 350, 300 and 100K
Abstract
<p>The crystal and molecular structure of pyridinium perrhenate [H <sub>5</sub>C<sub>5</sub>NH]<sup>+</sup>[ReO<sub>4</sub>]<sup>-</sup>(hereafter referred to as PyReO<sub>4</sub>) was determined by single-crystal neutron diffraction at 350, 300 and 100K. The neutron study confirmed the x-ray diffraction results in all three phases. The three temperature-dependent polymorphs are orthorhombic, with the following sequence of phases: Cmcm → Cmc2<sub>1</sub> → Pbca, with the a lattice parameter doubled. In the two high temperature phases the pyridinium cations display a rotational disorder while the perrhenate anions are well ordered. The low temperature phase is fully ordered. The neutron results allow for a very precise description of the distribution of the nitrogen atoms in the disordered pyridinium cation, which enables us to analyse the calorimetric and spontaneous polarization measurements. The results from the DSC and pyroelectric measurements point to a paraelectric (350K), ferroelectric (300K) with the Curie point at 336K and antiferroelectric (100K) crystal phases. The phase transition at 336K can be classified as an order-disorder ferroelectric with a small displacive component. © 2010 IOP Publishing Ltd.</p>