People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sheppard, Adrian
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2019Topological Persistence for Relating Microstructure and Capillary Fluid Trapping in Sandstonescitations
- 2018Digital core laboratory
- 2015Tomographic image analysis and processing to simulate micro-petrophysical experiments
- 2014The effects of manufacturing parameters on geometrical and mechanical properties of copper foams produced by space holder techniquecitations
- 2013Effect of fluid topology on residual nonwetting phase trappingcitations
- 2010Tomographic image analysis and processing to simulate micro-petrophysical experimentscitations
- 2009Imaging of metallic foams using X-ray micro-CTcitations
- 2008Automated registration for augmenting micro-CT 3D images
- 2008Liquid distribution and cohesion in wet granular assemblies beyond the capillary bridge regimecitations
- 2008A comparison of pore structure analysis by NMR and Xray-CT techniques
- 2006Elastic and transport properties of cellular solids derived from three-dimensional tomographic imagescitations
- 2005Volume conservation of the intermediate phase in three-phase pore-network modelscitations
- 2004Polymeric foam properties derived from 3D imagescitations
Places of action
Organizations | Location | People |
---|
article
Liquid distribution and cohesion in wet granular assemblies beyond the capillary bridge regime
Abstract
<p>Dry sand turns into a stiff and moldable material as soon as it is mixed with some liquid. This is a direct consequence of the internal liquid-air interfaces spanning between the grains which causes capillary cohesion by virtue of the surface tension of the liquid. As a model for wet granulates we investigated random packings of submillimeter spherical beads mixed with water. Measurements of the tensile strength and the fluidization threshold demonstrate that the mechanical stiffness is rather insensitive to the liquid content over a wide range. Only for a high liquid content, when more than half of the available pore space is filled with liquid, does the capillary cohesion weaken. In order to understand the interplay between the mechanical properties and the liquid content, we investigated the liquid distribution in random packings of glass spheres by means of x-ray microtomography. The three-dimensional images reveal that the liquid forms a network of capillary bridges fused at local triangular bead configurations. The spontaneous organization of the liquid into these ramified structures, which exhibit a large liquid-air interface, is responsible for the constancy of the cohesive forces in a wide range of liquid contents beyond the onset of capillary bridge coalescence.</p>