Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Rainford, B. D.

  • Google
  • 1
  • 6
  • 28

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2006Magnetic anisotropy in the cubic Laves REFe2 intermetallic compounds28citations

Places of action

Chart of shared publication
Fangohr, Hans
1 / 11 shared
Martin, K. N.
1 / 1 shared
Wang, K.
1 / 27 shared
Bowden, G. J.
1 / 2 shared
Groot, P. A. J. De
1 / 10 shared
Zimmermann, J. P.
1 / 3 shared
Chart of publication period
2006

Co-Authors (by relevance)

  • Fangohr, Hans
  • Martin, K. N.
  • Wang, K.
  • Bowden, G. J.
  • Groot, P. A. J. De
  • Zimmermann, J. P.
OrganizationsLocationPeople

article

Magnetic anisotropy in the cubic Laves REFe2 intermetallic compounds

  • Fangohr, Hans
  • Martin, K. N.
  • Wang, K.
  • Rainford, B. D.
  • Bowden, G. J.
  • Groot, P. A. J. De
  • Zimmermann, J. P.
Abstract

In the past, the Callen–Callen (1965 Phys. Rev. 139 A455–71; 1966 J. Phys. Chem. Solids 27 1271–85) model has been highly successful in explaining the origin and temperature dependence of the magneto-crystalline anisotropy in many magnetic compounds. Yet, despite their high ordering temperatures of ~650 K, the Callen–Callen model has proved insufficient for the REFe2 compounds. In this paper, we show that it is possible to replicate the values of the phenomenological parameters K1, K2, and K3 given by Atzmony and Dariel (1976 Phys. Rev. B 13 4006–14), by extending the Callen–Callen model to second order in HCF. In particular, explanations are provided for (i) the unexpected changes in sign of K1 and K2 in HoFe2 and DyFe2, respectively, and (ii) the origin and behaviour of the K3 term. In addition, it is demonstrated that higher order terms are required, and that K4 exceeds K3 at low temperatures. Revised estimates of K1, K2, K3, K4, and K5 are given. Finally, an alternative 'multipolar' approach to the problem of magnetic anisotropy is also provided. It is shown that the latter confers significant advantages over the older phenomenological method. In particular, all the multipolar coefficients ( {K}_N , N = 4, 6, 8, 10, 12) decrease monotonically with increasing temperature, with{K}_N decreasing faster than{K}_{N-2} etc. These observations are in accord with expectations based on the original Callen–Callen model.

Topics
  • impedance spectroscopy
  • compound
  • intermetallic