People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lemoine, Patrick
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2022Biocompatible Nanocomposite Coatings Deposited via Layer-by-Layer Assembly for the Mechanical Reinforcement of Highly Porous Interconnected Tissue-Engineered Scaffoldscitations
- 2022Nanoindentation and nano-scratching of hydroxyapatite coatings for resorbable magnesium alloy bone implant applicationscitations
- 2022Shear testing and failure modelling of calcium phosphate coated AZ31 magnesium alloys for orthopaedic applicationscitations
- 2021Effects of strontium-substitution in sputter deposited calcium phosphate coatings on the rate of corrosion of magnesium alloyscitations
- 2015Geopolymer Cement Concrete - An Emerging Technology for the Delivery of Resilient Highway Infrastructure Solutions
- 2011Structural and surface energy analysis of nitrogenated ta-C filmscitations
- 2007Intrinsic mechanical properties of ultra-thin amorphous carbon layerscitations
- 2006Measuring the thickness of ultra-thin diamond-like carbon filmscitations
- 2001Intrinsic stress measured on ultra-thin amorphous carbon films deposited on AFM cantileverscitations
- 2000The effects of Si incorporation on the microstructure and nanomechanical properties of DLC thin filmscitations
Places of action
Organizations | Location | People |
---|
article
The effects of Si incorporation on the microstructure and nanomechanical properties of DLC thin films
Abstract
A small amount of silicon incorporation into diamond-like carbon (DLC) films prepared by plasma-enhanced chemical vapour deposition (PECVD) onto Al2O3:TiC substrates was studied by a combination of surface analysis and nanomechanical measurement techniques, namely XPS, Raman spectroscopy, nanoindentation and nanoscratch methods. Addition of silicon to the DLC films leads to an increase in the fraction of sp3, as deduced from XPS analysis, and a decrease in the Raman band intensity ratio ID/IG. Although the coated substrates exhibit better scratch resistance and lubricity, the films as deposited are softer than the Al2O3:TiC substrates. Upon silicon incorporation, the mechanical and tribological properties are degraded. Wear protection of the Al2O3:TiC substrate by DLC coating corresponds to the competition between the reduction in friction coefficient and the softening of the films. It is suggested that, for such a PECVD process, the degradation of the mechanical properties is caused by the increased hydrogen content in the deposits when silicon is incorporated, as is shown by the increased Raman spectral background slope. These tendencies are attributable to the development of polymer-like chains, which can weaken the inter-molecular structure of the films.