Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kortshagen, Uwe R.

  • Google
  • 9
  • 29
  • 233

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (9/9 displayed)

  • 2022Plasma-Synthesized Nitrogen-Doped Titanium Dioxide Nanoparticles With Tunable Visible Light Absorption and Photocatalytic Activity4citations
  • 2020Plasmonic nanocomposites of zinc oxide and titanium nitride4citations
  • 2020Nanocrystal-based inorganic nanocomposites3citations
  • 2019Silicon Quantum Dot-Poly(methyl methacrylate) Nanocomposites with Reduced Light Scattering for Luminescent Solar Concentrators66citations
  • 2018Variable range hopping conduction in ZnO nanocrystal thin films11citations
  • 2017ZnO Nanocrystal Networks Near the Insulator-Metal Transition35citations
  • 2015Nonequilibrium-Plasma-Synthesized ZnO Nanocrystals with Plasmon Resonance Tunable via Al Doping and Quantum Confinement63citations
  • 2015Nonthermal plasma synthesis of metal sulfide nanocrystals from metalorganic vapor and elemental sulfur23citations
  • 2013Effects of water adsorption and surface oxidation on the electrical conductivity of silicon nanocrystal films24citations

Places of action

Chart of shared publication
Beaudette, Chad A.
3 / 3 shared
Eslamisaray, Mohammad Ali
1 / 1 shared
Concannon, Nolan M.
1 / 1 shared
Nguyen, Phong H.
1 / 2 shared
Aydil, Eray S.
1 / 9 shared
Greenberg, Benjamin L.
4 / 5 shared
Mkhoyan, K. Andre
2 / 17 shared
Held, Jacob T.
2 / 4 shared
Wang, Xiaojia
1 / 5 shared
Hollinger, Jon
1 / 1 shared
Peterson, Colin
1 / 6 shared
Hill, Samantha K. E.
1 / 2 shared
Ferry, Vivian E.
1 / 6 shared
Connell, Ryan
1 / 2 shared
Campbell, S. A.
1 / 3 shared
Benton, Brian T.
1 / 1 shared
Shklovskii, B. I.
1 / 3 shared
Robinson, Zachary L.
1 / 1 shared
Francis, Lorraine F.
1 / 8 shared
Reich, K. V.
1 / 1 shared
Gorynski, Claudia
1 / 1 shared
Voigt, Bryan N.
1 / 1 shared
Kramer, Nicolaas J.
1 / 1 shared
Ganguly, Shreyashi
1 / 1 shared
Thimsen, Elijah
1 / 1 shared
Rowe, David J.
1 / 1 shared
Anthony, Rebecca J.
1 / 1 shared
Merritt, Brian A.
1 / 1 shared
Rastgar, Neema
1 / 2 shared
Chart of publication period
2022
2020
2019
2018
2017
2015
2013

Co-Authors (by relevance)

  • Beaudette, Chad A.
  • Eslamisaray, Mohammad Ali
  • Concannon, Nolan M.
  • Nguyen, Phong H.
  • Aydil, Eray S.
  • Greenberg, Benjamin L.
  • Mkhoyan, K. Andre
  • Held, Jacob T.
  • Wang, Xiaojia
  • Hollinger, Jon
  • Peterson, Colin
  • Hill, Samantha K. E.
  • Ferry, Vivian E.
  • Connell, Ryan
  • Campbell, S. A.
  • Benton, Brian T.
  • Shklovskii, B. I.
  • Robinson, Zachary L.
  • Francis, Lorraine F.
  • Reich, K. V.
  • Gorynski, Claudia
  • Voigt, Bryan N.
  • Kramer, Nicolaas J.
  • Ganguly, Shreyashi
  • Thimsen, Elijah
  • Rowe, David J.
  • Anthony, Rebecca J.
  • Merritt, Brian A.
  • Rastgar, Neema
OrganizationsLocationPeople

article

Nonthermal plasma synthesis of metal sulfide nanocrystals from metalorganic vapor and elemental sulfur

  • Thimsen, Elijah
  • Kortshagen, Uwe R.
Abstract

<p>Nanocrystal synthesis in nonthermal plasmas has been focused on elemental group IV semiconductors such as Si and Ge. In contrast, very little is known about plasma synthesis of compound nanocrystals and the time is ripe to extend this synthesis approach to nanocrystals comprised of two or more elements such as metal sulfides, oxides and nitrides. Towards this end, we studied, in an argon-sulfur plasma, the synthesis of ZnS, Cu<sub>2</sub>S and SnS nanocrystals from metalorganic precursors diethyl Zn(II), hexafluoroacetylacetonate Cu(I) vinyltrimethylsilane, and tetrakis(dimethylamido) Sn(IV), respectively. In situ optical emission spectroscopy was used to observe changes in relative concentrations of various plasma species during synthesis, while ex situ material characterization was used to examine the crystal structure, elemental composition and optical absorption of these nanocrystals. For a constant metalorganic vapor feed rate, the elemental composition of the nanocrystals was found to be independent of the sulfur flow rate into the plasma, above a small threshold value. At constant sulfur flow rate, the nanocrystal composition depended on the metalorganic vapor feed rate. Specifically, the ensemble metal atomic fraction in the nanocrystals was found to increase with increasing metalorganic vapor flow rates, resulting in more metal-rich crystal phases. The metalorganic feed rate can be used to control the composition and crystal phase of the metal-sulfide nanocrystals synthesized using this plasma process.</p>

Topics
  • impedance spectroscopy
  • compound
  • phase
  • semiconductor
  • nitride