Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Schader, Florian

  • Google
  • 1
  • 4
  • 21

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2015Enhancing the operational range of piezoelectric actuators by uniaxial compressive preloading21citations

Places of action

Chart of shared publication
Rojas, Virginia
1 / 5 shared
Franzbach, Daniel J.
1 / 3 shared
Koruza, Jurij
1 / 50 shared
Webber, Kyle G.
1 / 145 shared
Chart of publication period
2015

Co-Authors (by relevance)

  • Rojas, Virginia
  • Franzbach, Daniel J.
  • Koruza, Jurij
  • Webber, Kyle G.
OrganizationsLocationPeople

article

Enhancing the operational range of piezoelectric actuators by uniaxial compressive preloading

  • Rojas, Virginia
  • Schader, Florian
  • Franzbach, Daniel J.
  • Koruza, Jurij
  • Webber, Kyle G.
Abstract

<p>The influence of the uniaxial preload on the off-resonance actuation performance of piezoelectric ceramics was investigated for compressive preload values up to -80 MPa. The study was performed on soft-type lead zirconate titanate (PZT), being the most widely used piezoelectric material. The samples were analysed using the proportional loading method, which enables the simultaneous application of electrical and mechanical loads, thereby mimicking the real operation conditions over the full stress-strain range. An increase of the blocking stress and the longitudinal piezoelectric stress coefficient was observed for all the applied preload values. The optimum properties, a blocking stress of -56 MPa and a free strain of 0.23%, were obtained at a preload value of -40 MPa and electric field of 2 kV mm<sup>- 1</sup>. This represents an increase of 16% and 20%, respectively, as compared to the values obtained at the smallest preload. In addition, the maximum work output was increased by about 28%. Finally, the results obtained at the lowest preload of -4 MPa using the proportional loading method were compared to the operational ranges determined by other methods. The comparison revealed large discrepancies between the methods, originating from the different order of the application of electrical and mechanical fields and the inherent nonlinearity of ferroelectric materials. This discrepancy results in decreased actuator performance due to impedance mismatching, demonstrating the need for accurate determination of the actuator's operational range.</p>

Topics
  • ceramic
  • piezoelectric material