People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Holmes, Christopher
University of Southampton
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2023Flexible photonics in carbon and glass fiber reinforced polymers for new multifunctionality: exploring the advances, challenges, and opportunitiescitations
- 2023Flexible Photonics in Carbon and Glass Fiber Reinforced Polymers for New Multifunctionalitycitations
- 2023Flexible Photonics in Carbon and Glass Fiber Reinforced Polymers for New Multifunctionality:Exploring the Advances, Challenges, and Opportunitiescitations
- 2022Design of microstructured flat optical fiber for multiaxial strain monitoring in composite materialscitations
- 2022New generation of embedded planar optics for in-situ, through-thickness and real-time strain measurements in carbon fiber reinforced polymer composites during the cure processcitations
- 2021Design of polarization-maintaining FBGs using polyimide films to improve strain-temperature sensing in CFRP laminatescitations
- 2020Identifying mechanical vibration modes of a cantilever using spectrally multiplexed Bragg gratings and machine learning
- 2020Structural health monitoring of composite laminate for aerospace applications via embedded panda fiber Bragg gratingcitations
- 2020Real-time through-thickness and in-plane strain measurement in Carbon Fibre Reinforced Polymer composites using planar optical Bragg gratingcitations
- 2018Direct UV written integrated waveguides using 213nm light
- 2015Optically integrated fiber: a new platform for harsh environmental sensing
- 2015Planarised optical fiber composite using flame hydrolysis deposition demonstrating an integrated FBG anemometer
- 2014Planarised optical fiber composite using flame hydrolysis deposition demonstrating an integrated FBG anemometercitations
- 2013Low optical-loss facet preparation for silica-on-silicon photonics using the ductile dicing regimecitations
- 2013Polish-like facet preparation via dicing for silica integrated opticscitations
- 2013Facet machining of silica waveguides with nanoscale roughness without polishing or lapping
- 2010Micromachined multimode interference device in flat-fibercitations
- 2010Integrated optic glass microcantilevers with Bragg grating interrogationcitations
Places of action
Organizations | Location | People |
---|
article
Low optical-loss facet preparation for silica-on-silicon photonics using the ductile dicing regime
Abstract
The efficient production of high-quality facets for low-loss coupling is a significant production issue in integrated optics, usually requiring time consuming and manually intensive lapping and polishing steps, which add considerably to device fabrication costs. The development of precision dicing saws with diamond impregnated blades has allowed optical grade surfaces to be machined in crystalline materials such as lithium niobate and garnets. In this report we investigate the optimization of dicing machine parameters to obtain optical quality surfaces in a silica-on-silicon planar device demonstrating high optical quality in a commercially important glassy material. We achieve a surface roughness of 4.9 nm (Sa) using the optimized dicing conditions. By machining a groove across a waveguide, using the optimized dicing parameters, a grating based loss measurement technique is used to measure precisely the average free space interface loss per facet caused by scattering as a consequence of surface roughness. The average interface loss per facet was calculated to be: -0.63 dB and -0.76 dB for the TE and TM polarizations, respectively.