Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hoefert, O.

  • Google
  • 1
  • 7
  • 23

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2012X-ray diffraction study on size effects in epitaxial magnetite thin films on MgO(0 0 1)23citations

Places of action

Chart of shared publication
Bertram, F.
1 / 12 shared
Wollschläger, Joachim
1 / 25 shared
Deiter, C.
1 / 5 shared
Zimmermann, B.
1 / 4 shared
Suendorf, M.
1 / 2 shared
Timmer, F.
1 / 1 shared
Schemme, T.
1 / 3 shared
Chart of publication period
2012

Co-Authors (by relevance)

  • Bertram, F.
  • Wollschläger, Joachim
  • Deiter, C.
  • Zimmermann, B.
  • Suendorf, M.
  • Timmer, F.
  • Schemme, T.
OrganizationsLocationPeople

article

X-ray diffraction study on size effects in epitaxial magnetite thin films on MgO(0 0 1)

  • Hoefert, O.
  • Bertram, F.
  • Wollschläger, Joachim
  • Deiter, C.
  • Zimmermann, B.
  • Suendorf, M.
  • Timmer, F.
  • Schemme, T.
Abstract

<jats:title>Abstract</jats:title><jats:p>Epitaxial ultrathin iron oxide films of different thicknesses were grown by reactive molecular beam epitaxy in 10<jats:sup>−6</jats:sup> mbar oxygen atmosphere on MgO(0 0 1) single crystal substrates at room temperature. Afterwards, the films were studied by x-ray diffraction, x-ray reflectivity and x-ray photoelectron spectroscopy to provide information regarding film structure as well as chemical composition of the films. Except for a very thin interface layer of subnanometre thickness, the iron oxide films have magnetite stoichiometry and structure and Mg does not diffuse from the substrate into the iron oxide film. The interface layer has a wuestite structure as determined by kinematic diffraction analysis. The magnetite films exhibit very homogeneous thickness while the vertical lattice constant decreases gradually towards its bulk value.</jats:p>

Topics
  • single crystal
  • x-ray diffraction
  • thin film
  • x-ray photoelectron spectroscopy
  • Oxygen
  • reactive
  • chemical composition
  • iron