Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Tomar, A. K.

  • Google
  • 1
  • 3
  • 98

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2011Optical and structural properties of poly(vinyl alcohol) films embedded with citrate-stabilized gold nanoparticles98citations

Places of action

Chart of shared publication
Kumar, Shyam
1 / 2 shared
Mahendia, Suman
1 / 3 shared
Chahal, Rishi Pal
1 / 1 shared
Chart of publication period
2011

Co-Authors (by relevance)

  • Kumar, Shyam
  • Mahendia, Suman
  • Chahal, Rishi Pal
OrganizationsLocationPeople

article

Optical and structural properties of poly(vinyl alcohol) films embedded with citrate-stabilized gold nanoparticles

  • Kumar, Shyam
  • Mahendia, Suman
  • Tomar, A. K.
  • Chahal, Rishi Pal
Abstract

<jats:p>Hydrosol of Au nanoparticles was prepared by citrate reduction of chloroauric acid. The synthesized nanoparticles were characterized through transmission electron microscopy (TEM) and UV–Visible spectroscopy. The prepared nanoparticles were almost spherical in shape with their mean diameter ∼6 nm and possessed face-centred-cubic (fcc) structure. The absorption spectrum of the as-prepared nanoparticles shows the SPR peak at 530 nm in agreement with that predicted from calculations based on <jats:italic>Mie</jats:italic> theory. These nanoparticles were dispersed in poly(vinyl alcohol) (PVA) using the sol–gel method to prepare PVA–Au nanocomposite films with different concentrations of Au. Optical and structural properties of these nanocomposites were studied using UV–Visible spectroscopy, x-ray diffraction (XRD) and FTIR spectroscopy. The value of optical band gap deduced from the UV–Visible absorption spectroscopy is found to be reduced from 4.98 eV (for pure PVA) to 3.85 eV after embedding 0.074 wt% of Au nanoparticles. Further, the refractive index behaviour for pure PVA and PVA–Au nanocomposite films was studied through transmission and reflection behaviour. The induced structural changes, revealed through XRD and FTIR spectroscopy, are responsible for the observed changes in optical behaviour of PVA after embedding Au nanoparticles in it.</jats:p>

Topics
  • nanoparticle
  • nanocomposite
  • impedance spectroscopy
  • x-ray diffraction
  • theory
  • gold
  • transmission electron microscopy
  • alcohol
  • surface plasmon resonance spectroscopy