Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Nelson, Greg

  • Google
  • 1
  • 5
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2010Low-temperature transport properties of Ta<sub>x</sub>N thin films (0.72 ⩽ x ⩽ 0.83)3citations

Places of action

Chart of shared publication
Yu, Lei
1 / 4 shared
Freericks, J. K.
1 / 6 shared
Očko, Miroslav
1 / 1 shared
Žonja, Sanja
1 / 1 shared
Newman, N.
1 / 15 shared
Chart of publication period
2010

Co-Authors (by relevance)

  • Yu, Lei
  • Freericks, J. K.
  • Očko, Miroslav
  • Žonja, Sanja
  • Newman, N.
OrganizationsLocationPeople

article

Low-temperature transport properties of Ta<sub>x</sub>N thin films (0.72 ⩽ x ⩽ 0.83)

  • Yu, Lei
  • Freericks, J. K.
  • Nelson, Greg
  • Očko, Miroslav
  • Žonja, Sanja
  • Newman, N.
Abstract

<jats:p>We report on low-temperature (4–320 K) transport properties of Ta<jats:sub><jats:italic>x</jats:italic></jats:sub>N thin films deposited on an amorphous SiO<jats:sub>2</jats:sub> substrate. In this work, Ta<jats:sub><jats:italic>x</jats:italic></jats:sub>N thin films were restricted to a narrow range of <jats:italic>x</jats:italic>: 0.72 ⩽ <jats:italic>x</jats:italic> ⩽ 0.83 yet show considerable and nonmonotonic variation of their transport properties with Ta concentration. This behaviour is consistent with a local minimum in the density of electronic states at the Fermi level, as calculated for the rock salt intermetallic Ta<jats:sub>4</jats:sub>N<jats:sub>5</jats:sub>, and a rigid band model for describing the transport. The temperature dependence of the resistivity is best fit to the unusual form exp(−<jats:italic>T</jats:italic>/<jats:italic>T</jats:italic><jats:sub>0</jats:sub>). Interestingly enough, the fit parameter <jats:italic>T</jats:italic><jats:sub>0</jats:sub> correlates well with the temperature of the maximum of the corresponding thermopower. Both of these characteristics, the fit and the correlation with the thermopower, are consistent with the Jonson–Mahan many-body formalism for charge and thermal transport when one has a nontrivial temperature dependence of the chemical potential. At the lowest temperatures measured, we have also found that the resistivity and thermopower show signatures of electron–electron interactions. We discuss also our results in the light of some theories usually used for describing transport of thin films and to other experimental investigations that have been performed on Ta<jats:sub><jats:italic>x</jats:italic></jats:sub>N.</jats:p>

Topics
  • density
  • impedance spectroscopy
  • amorphous
  • resistivity
  • thin film
  • intermetallic