People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Castellanos, A.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Electric field induced fluid flow on microelectrodes: the effect of illumination
Abstract
The electrokinetic manipulation of particles suspended in a fluid medium is accomplished using microelectrodes that generate non-uniform fields of significant strength from low applied potentials. The high strength fields produce not only forces on the particles but also on the fluid medium used for suspension. This paper presents qualitative and semi-quantitative observations of the movement of the fluid at applied field frequencies of the order of 1MHz and higher. The importance of the illumination in generating the fluid flow is described, the flow depending on both the intensity of illumination and the applied electric field. The theory of electrothermally induced fluid flow is briefly described and compared with the experimental observations. Reasonable agreement is found between the experiments and the theory, with the light generating temperature gradients, and therefore gradients in fluid permittivity and conductivity, and the electric field responsible for the motive force.