Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Dwek, Eli

  • Google
  • 10
  • 15
  • 1143

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (10/10 displayed)

  • 2021The infrared echo of SN2010jl and its implications for shock breakout characteristicscitations
  • 2016Dust destruction by the reverse shock in the Cassiopeia A supernova remnant88citations
  • 2015The Evolution of Dust Mass in the Ejecta of SN1987A67citations
  • 2013The Importance of Physical Models for Deriving Dust Masses and Grain Size Distributions in Supernova Ejecta. I. Radiatively Heated Dust in the Crab Nebula72citations
  • 2012Properties and Spatial Distribution of Dust Emission in the Crab Nebula46citations
  • 2010The Chemistry of Population III Supernova Ejecta. II. The Nucleation of Molecular Clusters as a Diagnostic for Dust in the Early Universe138citations
  • 2004The Detection of Cold Dust in Cassiopeia A: Evidence for the Formation of Metallic Needles in the Ejecta52citations
  • 2004Interstellar Dust Models Consistent with Extinction, Emission, and Abundance Constraints589citations
  • 2003Interstellar Dust Models Consistent with Extinction, Emission, and Abundance Constraintscitations
  • 2002The Zodiacal Emission Spectrum as Determined by COBE and Its Implications91citations

Places of action

Chart of shared publication
Sarangi, Arkaprabha
1 / 4 shared
Kazanas, Demos
1 / 1 shared
Fox, Ori D.
1 / 1 shared
Arendt, Richard G.
5 / 6 shared
Kallman, Timothy
1 / 1 shared
Slavin, Jonathan D.
1 / 1 shared
Micelotta, Elisabetta
1 / 1 shared
Temim, Tea
2 / 3 shared
Roellig, Thomas L.
1 / 2 shared
Gehrz, Robert D.
1 / 3 shared
Sonneborn, George
1 / 3 shared
Slane, Patrick
1 / 6 shared
Cherchneff, Isabelle
1 / 2 shared
Zubko, Viktor
2 / 2 shared
Fixsen, D. J.
1 / 2 shared
Chart of publication period
2021
2016
2015
2013
2012
2010
2004
2003
2002

Co-Authors (by relevance)

  • Sarangi, Arkaprabha
  • Kazanas, Demos
  • Fox, Ori D.
  • Arendt, Richard G.
  • Kallman, Timothy
  • Slavin, Jonathan D.
  • Micelotta, Elisabetta
  • Temim, Tea
  • Roellig, Thomas L.
  • Gehrz, Robert D.
  • Sonneborn, George
  • Slane, Patrick
  • Cherchneff, Isabelle
  • Zubko, Viktor
  • Fixsen, D. J.
OrganizationsLocationPeople

article

The Evolution of Dust Mass in the Ejecta of SN1987A

  • Dwek, Eli
  • Arendt, Richard G.
Abstract

We present a new analysis of the infrared (IR) emission from the ejecta of SN 1987A covering days 615, 775, 1144, 8515, and 9090 after the explosion. We show that the observations are consistent with the rapid formation of about 0.4 {M}<SUB>☉ </SUB> of dust, consisting of mostly silicates (MgSiO<SUB>3</SUB>), near day 615, and evolving to about 0.45 {M}<SUB>☉ </SUB> of composite dust grains consisting of ̃0.4 {M}<SUB>☉ </SUB> of silicates and ̃0.05 {M}<SUB>☉ </SUB> of amorphous carbon after day ̃8500. The proposed scenario challenges previous claims that dust in supernova (SN) ejecta is predominantly carbon, and that it grew from an initial mass of ̃10<SUP>-3</SUP> {M}<SUB>☉ </SUB>, to over 0.5 {M}<SUB>☉ </SUB> by cold accretion. It alleviates several problems with previous interpretations of the data: (1) it reconciles the abundances of silicon, magnesium, and carbon with the upper limits imposed by nucleosynthesis calculations, (2) it eliminates the requirement that most of the dust observed around day 9000 grew by cold accretion onto the ̃10<SUP>-3</SUP> {M}<SUB>☉ </SUB> of dust previously inferred for days 615 and 775 after the explosion, and (3) establishes the dominance of silicate over carbon dust in the SN ejecta. At early epochs, the IR luminosity of the dust is powered by the radioactive decay of <SUP>56</SUP>Co, and at late times by at least (1.3-1.6) × 10<SUP>-4</SUP> {M}<SUB>☉ </SUB> of <SUP>44</SUP>Ti.

Topics
  • impedance spectroscopy
  • amorphous
  • Carbon
  • grain
  • Magnesium
  • Magnesium
  • composite
  • Silicon