Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Barlow, Mj

  • Google
  • 8
  • 68
  • 599

University College London

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (8/8 displayed)

  • 2021The impact of metallicity-dependent dust destruction on the dust-to-metals ratio in galaxiescitations
  • 2019The dust content of the Crab Nebulacitations
  • 2015A stubbornly large mass of cold dust in the ejecta of Supernova 1987A174citations
  • 2015The dust and gas content of the Crab Nebula106citations
  • 2012A Cool Dust Factory in the Crab Nebula: A Herschel Study of the Filaments184citations
  • 2007Dust yields in clumpy supernova shells: SN 1987A revisited94citations
  • 2006The Spatial Distribution of Grains Around the Dual Chemistry Post-AGB Star Roberts 22citations
  • 2003Three-dimensional photoionization modelling of the hydrogen-deficient knots in the planetary nebula Abell 3041citations

Places of action

Chart of shared publication
De Looze, I.
2 / 13 shared
Priestley, Fd
1 / 1 shared
Matsuura, M.
2 / 12 shared
Bietenholz, Mf
1 / 1 shared
Bandiera, R.
1 / 1 shared
Priestley, F.
1 / 1 shared
Bevan, A.
1 / 3 shared
Gomez, Hl
2 / 2 shared
Chawner, H.
1 / 1 shared
Wesson, R.
1 / 7 shared
Owen, P. J.
2 / 2 shared
Henning, Th.
1 / 7 shared
Gomez, E. L.
1 / 4 shared
Clark, C. J. R.
1 / 5 shared
Gear, W. K.
1 / 4 shared
Gomez, H. L.
1 / 8 shared
Krause, O.
1 / 2 shared
Swinyard, B. M.
1 / 4 shared
Ivison, R. J.
1 / 3 shared
Polehampton, E. T.
1 / 3 shared
Bouwman, J.
1 / 3 shared
Sibthorpe, B.
1 / 2 shared
Besel, M. -A.
1 / 1 shared
Rho, J.
1 / 2 shared
Ercolano, B.
3 / 5 shared
Sugerman, Bek
1 / 1 shared
Bowey, Janet
1 / 1 shared
Epitácio Pereira, D. N.
1 / 1 shared
De Araújo, F. X.
1 / 1 shared
Lorenz-Martins, S.
1 / 1 shared
Rauch, T.
1 / 6 shared
Liu, Xw
1 / 1 shared
Werner, K.
1 / 1 shared
Storey, Pj
1 / 1 shared
Chart of publication period
2021
2019
2015
2012
2007
2006
2003

Co-Authors (by relevance)

  • De Looze, I.
  • Priestley, Fd
  • Matsuura, M.
  • Bietenholz, Mf
  • Bandiera, R.
  • Priestley, F.
  • Bevan, A.
  • Gomez, Hl
  • Chawner, H.
  • Wesson, R.
  • Owen, P. J.
  • Henning, Th.
  • Gomez, E. L.
  • Clark, C. J. R.
  • Gear, W. K.
  • Gomez, H. L.
  • Krause, O.
  • Swinyard, B. M.
  • Ivison, R. J.
  • Polehampton, E. T.
  • Bouwman, J.
  • Sibthorpe, B.
  • Besel, M. -A.
  • Rho, J.
  • Ercolano, B.
  • Sugerman, Bek
  • Bowey, Janet
  • Epitácio Pereira, D. N.
  • De Araújo, F. X.
  • Lorenz-Martins, S.
  • Rauch, T.
  • Liu, Xw
  • Werner, K.
  • Storey, Pj
OrganizationsLocationPeople

article

The dust and gas content of the Crab Nebula

  • Barlow, Mj
  • Owen, P. J.
Abstract

We have constructed mocassin photoionization plus dust radiative transfer models for the Crab Nebula core-collapse supernova (CCSN) remnant, using either smooth or clumped mass distributions, in order to determine the chemical composition and masses of the nebular gas and dust. We computed models for several different geometries suggested for the nebular matter distribution but found that the observed gas and dust spectra are relatively insensitive to these geometries, being determined mainly by the spectrum of the pulsar wind nebula which ionizes and heats the nebula. Smooth distribution models are ruled out since they require 16-49 M <SUB>☉ </SUB> of gas to fit the integrated optical nebular line fluxes, whereas our clumped models require 7.0 M <SUB>☉ </SUB> of gas. A global gas-phase C/O ratio of 1.65 by number is derived, along with a He/H number ratio of 1.85, neither of which can be matched by current CCSN yield predictions. A carbonaceous dust composition is favored by the observed gas-phase C/O ratio: amorphous carbon clumped model fits to the Crab’s Herschel and Spitzer infrared spectral energy distribution imply the presence of 0.18-0.27 M <SUB>☉ </SUB> of dust, corresponding to a gas to dust mass ratio of 26-39. Mixed dust chemistry models can also be accommodated, comprising 0.11-0.13 M <SUB>☉ </SUB> of amorphous carbon and 0.39-0.47 M <SUB>☉ </SUB> of silicates. Power-law grain size distributions with mass distributions that are weighted toward the largest grain radii are derived, favoring their longer-term survival when they eventually interact with the interstellar medium. The total mass of gas plus dust in the Crab Nebula is 7.2 ± 0.5 M <SUB>☉ </SUB>, consistent with a progenitor star mass of ̃9 M <SUB>☉ </SUB>.

Topics
  • impedance spectroscopy
  • amorphous
  • Carbon
  • grain
  • grain size
  • phase
  • chemical composition