Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Koda, Jin

  • Google
  • 1
  • 12
  • 23

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2013Investigating the Presence of 500 μm Submillimeter Excess Emission in Local Star Forming Galaxies23citations

Places of action

Chart of shared publication
Calzetti, Daniela
1 / 1 shared
Kirkpatrick, Allison
1 / 4 shared
Aniano, Gonzalo
1 / 1 shared
Kennicutt, Rob, Jr.
1 / 1 shared
Hinz, Joannah
1 / 1 shared
Galametz, Maud
1 / 2 shared
Crocker, Alison
1 / 1 shared
Walter, Fabian
1 / 5 shared
Armus, Lee
1 / 6 shared
Dale, Daniel A.
1 / 5 shared
Sandstrom, Karin
1 / 4 shared
Hunt, Leslie
1 / 4 shared
Chart of publication period
2013

Co-Authors (by relevance)

  • Calzetti, Daniela
  • Kirkpatrick, Allison
  • Aniano, Gonzalo
  • Kennicutt, Rob, Jr.
  • Hinz, Joannah
  • Galametz, Maud
  • Crocker, Alison
  • Walter, Fabian
  • Armus, Lee
  • Dale, Daniel A.
  • Sandstrom, Karin
  • Hunt, Leslie
OrganizationsLocationPeople

article

Investigating the Presence of 500 μm Submillimeter Excess Emission in Local Star Forming Galaxies

  • Koda, Jin
  • Calzetti, Daniela
  • Kirkpatrick, Allison
  • Aniano, Gonzalo
  • Kennicutt, Rob, Jr.
  • Hinz, Joannah
  • Galametz, Maud
  • Crocker, Alison
  • Walter, Fabian
  • Armus, Lee
  • Dale, Daniel A.
  • Sandstrom, Karin
  • Hunt, Leslie
Abstract

Submillimeter excess emission has been reported at 500 μm in a handful of local galaxies, and previous studies suggest that it could be correlated with metal abundance. We investigate the presence of an excess submillimeter emission at 500 μm for a sample of 20 galaxies from the Key Insights on Nearby Galaxies: a Far Infrared Survey with Herschel (KINGFISH) that span a range of morphologies and metallicities (12 + log (O/H) = 7.8-8.7). We probe the far-infrared (IR) emission using images from the Spitzer Space Telescope and Herschel Space Observatory in the wavelength range 24-500 μm. We model the far-IR peak of the dust emission with a two-temperature modified blackbody and measure excess of the 500 μm photometry relative to that predicted by our model. We compare the submillimeter excess, where present, with global galaxy metallicity and, where available, resolved metallicity measurements. We do not find any correlation between the 500 μm excess and metallicity. A few individual sources do show excess (10%-20%) at 500 μm conversely, for other sources, the model overpredicts the measured 500 μm flux density by as much as 20%, creating a 500 μm "deficit." None of our sources has an excess larger than the calculated 1σ uncertainty, leading us to conclude that there is no substantial excess at submillimeter wavelengths at or shorter than 500 μm in our sample. Our results differ from previous studies detecting 500 μm excess in KINGFISH galaxies largely due to new, improved photometry used in this study....

Topics
  • density
  • impedance spectroscopy
  • forming