Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ingleby, L.

  • Google
  • 1
  • 7
  • 51

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2013Curved walls: Grain growth, settling, and composition patterns in T Tauri disk dust sublimation fronts51citations

Places of action

Chart of shared publication
Dalessio, P.
1 / 2 shared
Sargent, B.
1 / 4 shared
Hartmann, L.
1 / 5 shared
Hernandez, J.
1 / 3 shared
Watson, D. M.
1 / 4 shared
Calvet, N.
1 / 2 shared
Mcclure, M. K.
1 / 1 shared
Chart of publication period
2013

Co-Authors (by relevance)

  • Dalessio, P.
  • Sargent, B.
  • Hartmann, L.
  • Hernandez, J.
  • Watson, D. M.
  • Calvet, N.
  • Mcclure, M. K.
OrganizationsLocationPeople

document

Curved walls: Grain growth, settling, and composition patterns in T Tauri disk dust sublimation fronts

  • Dalessio, P.
  • Sargent, B.
  • Hartmann, L.
  • Ingleby, L.
  • Hernandez, J.
  • Watson, D. M.
  • Calvet, N.
  • Mcclure, M. K.
Abstract

The dust sublimation walls of disks around T Tauri stars represent a directly observable cross-section through the disk atmosphere and midplane. Their emission properties can probe the grain size distribution and composition of the innermost regions of the disk, where terrestrial planets form. Here we calculate the inner dust sublimation wall properties for four classical T Tauri stars with a narrow range of spectral types and inclination angles and a wide range of mass accretion rates to determine the extent to which the walls are radially curved. Best-fits to the near- and mid-IR excesses are found for curved, 2-layer walls in which the lower layer contains larger, hotter, amorphous pyroxene grains with Mg/(Mg+Fe)=0.6 and the upper layer contains submicron, cooler, mixed amorphous olivine and forsterite grains. As the mass accretion rates decrease from 10^(-8) to 10^(-10) Msol/yr, the maximum grain size in the lower layer decreases from 3 to 0.5 microns. We attribute this to a decrease in fragmentation and turbulent support for micron-sized grains with decreasing viscous heating. The atmosphere of these disks is depleted of dust with dust-gas mass ratios 1x10^(-4) of the ISM value, while the midplane is enhanced to 8 times the ISM value. For all accretion rates, the wall contributes at least half of the flux in the optically thin 10 micron silicate feature. Finally, we find evidence for an iron gradient in the disk, suggestive of that found in our solar system. ; Comment: 18 pages, 12 figures, 1 table, accepted to ApJ

Topics
  • impedance spectroscopy
  • amorphous
  • grain
  • grain size
  • iron
  • grain growth