People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Slane, Patrick
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2021JWST Survey of the Prototypical Core-collapse Supernova Remnant Cassiopeia A
- 2012A Detailed Chandra Study of the Interstellar Medium Metallicity in the Large Magellanic Cloud
- 2012Properties and Spatial Distribution of Dust Emission in the Crab Nebulacitations
- 2008Discovery of Fast-Moving X-Ray-Emitting Ejecta Knots in the Oxygen-Rich Supernova Remnant Puppis Acitations
- 2001Two New Ejecta-dominated Galactic Supernova Remnants: G337.2-0.7 and G309.2-0.6citations
- 2001A New ASCA and ROSAT Study of the Supernova Remnant G272.2-3.2citations
Places of action
Organizations | Location | People |
---|
article
Properties and Spatial Distribution of Dust Emission in the Crab Nebula
Abstract
Recent infrared (IR) observations of freshly formed dust in supernova remnants have yielded significantly lower dust masses than predicted by theoretical models and measured from high-redshift observations. The Crab Nebula's pulsar wind is thought to be sweeping up freshly formed supernova (SN) dust along with the ejected gas. The evidence for this dust was found in the form of an IR excess in the integrated spectrum of the Crab and in extinction against the synchrotron nebula that revealed the presence of dust in the filament cores. We present the first spatially resolved emission spectra of dust in the Crab Nebula acquired with the Infrared Spectrograph on board the Spitzer Space Telescope. The IR spectra are dominated by synchrotron emission and show forbidden line emission from S, Si, Ne, Ar, O, Fe, and Ni. We derived a synchrotron spectral map from the 3.6 and 4.5 μm images, and subtracted this contribution from our data to produce a map of the residual continuum emission from dust. The dust emission appears to be concentrated along the ejecta filaments and is well described by an amorphous carbon or silicate grain compositions. We find a dust temperature of 55 ± 4 K for silicates and 60 ± 7 K for carbon grains. The total estimated dust mass is (1.2-12) × 10<SUP>-3</SUP> M <SUB>☉</SUB>, well below the theoretical dust yield predicted for a core-collapse supernova. Our grain heating model implies that the dust grain radii are relatively small, unlike what is expected for dust grains formed in a Type IIP SN.