People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Dwek, Eli
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2021The infrared echo of SN2010jl and its implications for shock breakout characteristics
- 2016Dust destruction by the reverse shock in the Cassiopeia A supernova remnantcitations
- 2015The Evolution of Dust Mass in the Ejecta of SN1987Acitations
- 2013The Importance of Physical Models for Deriving Dust Masses and Grain Size Distributions in Supernova Ejecta. I. Radiatively Heated Dust in the Crab Nebulacitations
- 2012Properties and Spatial Distribution of Dust Emission in the Crab Nebulacitations
- 2010The Chemistry of Population III Supernova Ejecta. II. The Nucleation of Molecular Clusters as a Diagnostic for Dust in the Early Universecitations
- 2004The Detection of Cold Dust in Cassiopeia A: Evidence for the Formation of Metallic Needles in the Ejectacitations
- 2004Interstellar Dust Models Consistent with Extinction, Emission, and Abundance Constraintscitations
- 2003Interstellar Dust Models Consistent with Extinction, Emission, and Abundance Constraints
- 2002The Zodiacal Emission Spectrum as Determined by COBE and Its Implicationscitations
Places of action
Organizations | Location | People |
---|
article
Properties and Spatial Distribution of Dust Emission in the Crab Nebula
Abstract
Recent infrared (IR) observations of freshly formed dust in supernova remnants have yielded significantly lower dust masses than predicted by theoretical models and measured from high-redshift observations. The Crab Nebula's pulsar wind is thought to be sweeping up freshly formed supernova (SN) dust along with the ejected gas. The evidence for this dust was found in the form of an IR excess in the integrated spectrum of the Crab and in extinction against the synchrotron nebula that revealed the presence of dust in the filament cores. We present the first spatially resolved emission spectra of dust in the Crab Nebula acquired with the Infrared Spectrograph on board the Spitzer Space Telescope. The IR spectra are dominated by synchrotron emission and show forbidden line emission from S, Si, Ne, Ar, O, Fe, and Ni. We derived a synchrotron spectral map from the 3.6 and 4.5 μm images, and subtracted this contribution from our data to produce a map of the residual continuum emission from dust. The dust emission appears to be concentrated along the ejecta filaments and is well described by an amorphous carbon or silicate grain compositions. We find a dust temperature of 55 ± 4 K for silicates and 60 ± 7 K for carbon grains. The total estimated dust mass is (1.2-12) × 10<SUP>-3</SUP> M <SUB>☉</SUB>, well below the theoretical dust yield predicted for a core-collapse supernova. Our grain heating model implies that the dust grain radii are relatively small, unlike what is expected for dust grains formed in a Type IIP SN.