Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Suntzeff, Nicholas B.

  • Google
  • 1
  • 12
  • 95

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2010First Results from the NOAO Survey of the Outer Limits of the Magellanic Clouds95citations

Places of action

Chart of shared publication
Saha, Abhijit
1 / 4 shared
Minniti, Dante
1 / 1 shared
Cook, Kem H.
1 / 1 shared
Seitzer, Patrick
1 / 1 shared
Rest, Armin
1 / 2 shared
Olszewski, Edward W.
1 / 1 shared
Brondel, Brian
1 / 1 shared
Knezek, Patricia
1 / 1 shared
Harris, Jason
1 / 1 shared
Smith, Chris
1 / 1 shared
Subramaniam, Annapurni
1 / 1 shared
Claver, Jennifer
1 / 1 shared
Chart of publication period
2010

Co-Authors (by relevance)

  • Saha, Abhijit
  • Minniti, Dante
  • Cook, Kem H.
  • Seitzer, Patrick
  • Rest, Armin
  • Olszewski, Edward W.
  • Brondel, Brian
  • Knezek, Patricia
  • Harris, Jason
  • Smith, Chris
  • Subramaniam, Annapurni
  • Claver, Jennifer
OrganizationsLocationPeople

article

First Results from the NOAO Survey of the Outer Limits of the Magellanic Clouds

  • Saha, Abhijit
  • Suntzeff, Nicholas B.
  • Minniti, Dante
  • Cook, Kem H.
  • Seitzer, Patrick
  • Rest, Armin
  • Olszewski, Edward W.
  • Brondel, Brian
  • Knezek, Patricia
  • Harris, Jason
  • Smith, Chris
  • Subramaniam, Annapurni
  • Claver, Jennifer
Abstract

We describe the first results from the Outer Limits Survey, an NOAO survey designed to detect, map, and characterize the extended structure of the Large and Small Magellanic Clouds (LMC and SMC). The survey consists of deep images of 55 0fdg6 × 0fdg6 fields distributed at distances up to 20° from the Clouds, with 10 fields at larger distances representing controls for contamination by Galactic foreground stars and background galaxies. The field locations probe the outer structure of both the LMC and SMC, as well as exploring areas defined by the Magellanic Stream, the Leading Arm, and the LMC orbit as recently measured from its proper motion. The images were taken with C, M, R, I, and DDO51 filters on the CTIO Blanco 4 m telescope and Mosaic2 camera, with supporting calibration observations taken at the CTIO 0.9 m telescope. The CRI images reach depths below the oldest main-sequence (MS) turnoffs at the distance of the Clouds, thus yielding numerous probes of structure combined with good ability to measure stellar ages and metallicities. The M and DDO51 images allow for discrimination of LMC and SMC giant stars from foreground dwarfs, allowing us to use giants as additional probes of Cloud structure and populations. From photometry of eight fields located at radii of 7°-19° north of the LMC bar, we find MS stars associated with the LMC out to 16° from the LMC center, while the much rarer giants can only be convincingly detected out to 11°. In one field, designated as a control, we see the unmistakable signature of the Milky Way (MW) globular cluster NGC 1851, which lies several tidal radii away from the field center. The color-magnitude diagrams show that while at 7° radius LMC populations as young as 500 Myr are present, at radii gsim11° only the LMC's underlying old metal-poor ([M/H] ~-1) population remains, demonstrating the existence of a mean population gradient at these radii. Nevertheless, even at extreme large distances, the dominant age is significantly younger than that of the Galactic globular clusters. The MS star counts follow an exponential decline with distance with a scale length of 1.15 kpc, essentially the same scale length as gleaned for the inner LMC disk from prior studies. While we cannot rule out the existence of undetected tidal features elsewhere in the LMC periphery, the detection of an ordered structure to 12 disk scale lengths is unprecedented and adds to the puzzle of the LMC's interaction history with the SMC and the MW. Our results do not rule out the possible existence of an LMC stellar halo, which we show may only begin to dominate over the disk at still larger radii than where we have detected LMC populations.

Topics
  • impedance spectroscopy
  • cluster
  • mass spectrometry